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Introduction

This ebook has been provided to remind you of some mathematical skills which
are assumed by the module that you are studying. We assume that you can add,
subtract, multiply and divide whole numbers, and where advanced mathematical
skills are required, they will be taught within your module.

You are advised to skim-read the material in this ebook, so that you are aware of
the ways in which it might help you. Then, when you come across a mathematical
concept in your module resources that you are uncertain about, you can refer back
to this ebook, using the list of contents (accessed by clicking on the button
at the bottom of the page) or the index ( ) to help you find the relevant section.

When working though a section of this ebook, it is particularly important that you
try the questions as you go along. You may find it helpful to have some paper and
a pen or pencil by your side as you as you work through the ebook, to help you
in working out the answers to the questions. The answers (with working) can be
accessed by clicking on the ‘Answer’ link to the right of each question. To return
to the question, either click on the question number within the answer, or use the
“back” button ( ) at the bottom of the page. However, please do have a go at
the questions yourself before looking at the answers. Practising is the best way to
learn new mathematical skills.
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Using your scientific calculator

You will need to use a scientific calculator in your module. Unfortunately, dif-
ferent calculators operate in slightly different ways, so this ebook cannot provide
comprehensive instructions on how to use your calculator. However, at key points
where you need to be able to use your calculator for a specific purpose, we have
provided some guidelines as to the most likely buttons to use. These guidelines,
combined with the manufacturer’s operating instructions, should enable you to
use your calculator effectively, and you should check that you can do this when
advised to do so. In addition, in Section 15, we explain how four specific calcu-
lators (including the Windows calculator which is likely to be installed on your
computer) can be used for several specific calculations. Hopefully these exam-
ples will help you to see how to use your calculator effectively, for these and
other questions you encounter.

If you find that you are not able to use your calculator to get the result given in this
booklet or other module resources, you should contact your tutor or study adviser
as soon as possible.
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Doing calculations, with or without
a calculator 1
Most science modules assume that you can add, subtract, multiply and divide
whole numbers.

Question
Check that you can do this by carrying out the following four calculations
without using a calculator: 9 + 3; 9 − 3; 9 × 3; 9 ÷ 3.

Answer
You should have obtained the following answers:
9 + 3 = 12; 9 − 3 = 6; 9 × 3 = 27; 9 ÷ 3 = 3.

Now check that you can use your calculator to obtain the same answers as before.
You are likely to need to enter the numbers and symbols in a simple sequence
from left to right (e.g. ‘9’ then ‘+’ then ‘3’) and then to press the ‘=’ key. How-
ever, some calculators use the symbol ‘∗’ instead of ‘×’ for multiplication and ‘/’
instead of ‘÷’ for division, and at least one model requires users to press ‘Enter’
instead of ‘=’ in order to obtain the answer. Check your calculator now!
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Most scientific calculations are rather more complicated than those discussed
above, in that they involve several steps. In some of these calculations, for ex-
ample:

9 + 3 + 5 + 2,
3 + 4 − 2,
5 × 2 × 7,
6 × 2 ÷ 3,

you simply need to start at the left and work through to the right. So in the first
example, adding 9 and 3 gives 12, adding another 5 gives 17 and adding another
2 gives the final answer of 19.

Question
Check that you can do the following three calculations both without and with
a calculator: 3 + 4 − 2; 5 × 2 × 7; 6 × 2 ÷ 3.

Answer
You should have obtained the following answers:
3 + 4 − 2 = 5; 5 × 2 × 7 = 70; 6 × 2 ÷ 3 = 4.
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Question 1.1

Use your calculator to find the following:

(a) 283 + 729 Answer

(b) 38 + 92 − 61 Answer

(c) 761 × 13 Answer

(d) 94 ÷ 47 Answer

(e) 24 × 32 × 8 Answer

(f) 24 × 32 ÷ 8 Answer

1.1 Doing calculations in the right order

Consider now the calculation 3 + 2 × 4. If you simply work from left to right in
this case, adding 3 and 2 gives 5, then multiplying by 4 gives 20, but this is the
incorrect answer.

There is a rule, applied by mathematicians and scientists everywhere, which states
that:

multiplication and division should be carried out before addition and subtrac-
tion.

9



Applying this rule to the calculation 3 + 2 × 4, the multiplication of 2 and 4
should be done first, giving 8, then the 3 is added to give the correct final answer
of 11. Most modern calculators ‘know’ this rule (which is known as a rule of
precedence, where precedence means ‘priority’), so entering 3 + 2 × 4 into your
calculator in exactly the order in which it is written should give the correct answer
of 11. Check this on your calculator now.

Question 1.2

Do the following calculations without using your calculator. Use your calcu-
lator to check the answers.

(a) 3 × 4 + 2 Answer

(b) 2 + 4 × 3 Answer

(c) 35 ÷ 5 + 2 Answer

(d) 4 × 2 − 21 ÷ 7 Answer

1.2 What about powers?

Most people are familiar with the fact that 5 × 5 can also be written as 52 (said as
‘five squared’) and 4 × 4 × 4 as 43 (said as ‘four cubed’). This shorthand notation
can be extended indefinitely, so 2 × 2 × 2 × 2 × 2 × 2 becomes 26 (said as ‘two to
the power of six’, or more usually just as ‘two to the six’). In this example, the
2 is called the base number and the superscript 6 (indicating the number of twos
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that have been multiplied together) is variously called the power, the exponent, or
the index (plural indices).

Question
Use your calculator’s instruction booklet to find out how to enter a base num-
ber raised to a power, such as 26.

Answer
You may have a button labelled ‘xy’, in which case you should press ‘2’ then
‘xy’ then ‘6’. Alternatively you may have a button labelled ‘^’ in which case
you should press ‘2’ then ‘^’ then ‘6’.

(Note that 26 = 64; your calculator may calculate this value straight away.)

If you are asked to calculate, say, 5×32, another rule of precedence tells you that:

powers should be calculated before multiplication, division, addition or sub-
traction.

So, in the example of 5 × 32, the 32 should be evaluated (worked out) first.

32 = 3 × 3 = 9, so 5 × 32 = 5 × 9 = 45.
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Question 1.3

Do the following calculations without using your calculator. Use your calcu-
lator to check the answers.

(a) 33 Answer

(b) 3 × 52 Answer

(c) 23 × 32 Answer

(d) 32 + 42 Answer

1.3 The role of brackets

Sometimes, you need to do the addition or subtraction in a calculation before
the multiplication, or to add two numbers together before raising to a power. The
way to over-ride the standard rules of ‘multiplication before addition’ and ‘powers
before multiplication’, etc., is to use brackets:

brackets in a calculation mean ‘do this first’.

So, in the calculation (3 + 2) × 4, you should add the 3 and the 2 first (to give 5),
then multiply by 4, i.e. (3 + 2) × 4 = 5 × 4 = 20. Similarly, in the calculation
(3+4)2, you should add the 3 and the 4 first before squaring. So (3+4)2 = 72 = 49.
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You can do calculations including brackets on a scientific calculator by making
use of its brackets keys, usually labelled as ‘(‘and ‘)’. Try the calculation (3+2)×4
on your calculator now.

If you have a calculation which involves nested brackets, work out the innermost
sets first. For example:

20 ÷ { (3 − 1) × (3 + 2) } = 20 ÷ {2 × 5} = 20 ÷ 10 = 2

Note that using different symbols for the brackets, for example ( ), { } and [ ],
makes the calculation clearer than using the same symbol throughout the calcula-
tion.

Strictly speaking, brackets are only needed to override the other rules of prece-
dence, and they are not needed in calculations such as 3+(2×4). In the absence of
the brackets, you or your calculator would follow the rule and do the multiplica-
tion first in any case. However, brackets are often used in calculations for clarity,
even when they are not strictly necessary. For example, the calculation 6×4+12×5
is more understandable and ‘readable’ if it is written as (6 × 4) + (12 × 5), even
though the brackets are not essential here. You are encouraged to write brackets in
your calculations whenever they help you to express your working more clearly.
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1.4 BEDMAS

Fortunately, there is an easy way to remember the correct order in which arith-
metic operations should be carried out. The rules are neatly summed up in the
mnemonic BEDMAS. The letters in BEDMAS stand for Brackets, Exponents,
Division, Multiplication, Addition and Subtraction, and the order of the letters
gives the order in which the operations should be carried out. In other words, you
should work out the brackets first, then the exponents (otherwise known as in-
dices or powers), then any divisions and multiplications, and finally the additions
and subtractions. You may see BIDMAS (where the ‘I’ stands for ‘Indices’) or
BODMAS written instead of BEDMAS; the three expressions are equivalent.

There is one final point to make about the order in which arithmetic should be
done. When faced with a calculation that includes a series of multiplications and
divisions (or a series of additions and subtractions), then you should work through
the calculation from left to right in the order in which it is written.
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Question 1.4

To practise the BEDMAS rules, try the following calculations both in your
head and with your calculator.

(a) 26 − 12 + 4 Answer

(b) 16 + 12 × 2 Answer

(c) (16 + 12) × 2 Answer

(d) 35 − 7 × 2 Answer

(e) (35 − 7) × 2 Answer

(f) 180 ÷ 10 × 3 Answer

(g) 180 ÷ (10 × 3) Answer

(h) (4 × 3)2 Answer

(i) 4 × 32 Answer

(j) {(10 + 5) × (3 + 1)} + 4 Answer
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1.5 Alternative ways of writing calculations

So far in this booklet, the four arithmetic operations have been written as +, −, ×
and ÷. However, in scientific calculations, division is more usually written as a
fraction (see Section 3.1 for more about fractions). Twelve divided by three could

equally accurately be written as 12 ÷ 3, 12/3 or
12
3

.

Or, to give a slightly more complicated example, (8 + 4) ÷ 3 could equally accu-

rately be written as (8 + 4)/3 or as
8 + 4

3
.

Note that the bracket, used to indicate that the addition should be done before the
division in this case, has been omitted from the final statement of this expression.
This is because the horizontal line used to indicate division acts as an ‘invisible
bracket’, i.e.

8 + 4
3

=
(8 + 4)

3
=

12
3

= 4.

Other mathematical symbols can act as ‘invisible brackets’. The most commonly
used one is the square root sign

√
. Finding the square root of a number is the

opposite of finding the square. So, since 32 (said as ‘three squared’) is 9,
√

9
(said as ‘the square root of 9’) is 3 (strictly, the square root of 9 could also be the
negative number -3, but this booklet will only consider positive square roots). If
you are asked to calculate

√
9 + 7, the fact that the upper line of the square root

sign extends to include the whole of the addition means that the addition should
be done first, i.e.

√
9 + 7 =

√
(9 + 7) =

√
16 = 4. Note that this is rather different

16



from
√

9 + 7, in which the square root sign only extends over the 9, so
√

9 + 7 = 3 + 7 = 10

Provided the meaning is clear without it, the multiplication sign × is also some-
times omitted from calculations. So 2 × (3 + 4) could be written as 2(3 + 4) and
(10 + 5) × (3 + 1) could be written as (10 + 5)(3 + 1).

Question 1.5

Evaluate the following, with or without your calculator:

(a)
18 + 6

3
Answer

(b)
18
3

+ 6 Answer

(c) 20/4 + 6 Answer

(d) 20/(4 + 6) Answer

(e)
√

16 + 9 Answer

(f)
√

16 +
√

9 Answer

(g) 3(8 − 3) Answer

(h) (8 − 4)(3 + 5) Answer

Note that the instruction to ‘evaluate’ simply means ‘calculate the value of’.
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1.6 Checking your answer

Unfortunately, it is possible to get the wrong answer when using a calculator. This
is not an indication of the unreliability of modern electronic technology; it’s an
indication that a calculator is only as good as the fingers that press the keys! It is
easy to press the wrong key, or to press keys in the wrong order, and hence to end
up with a meaningless answer. It is therefore good practice to check the numbers
that appear in the display as you key them in, and to repeat a calculation if the
answer seems suspicious.

This begs the question of how you know if the answer looks suspicious. There
are a few simple things to look out for: when adding positive numbers, the an-
swer should be bigger than the largest of the numbers you are adding; and when
subtracting one positive number from another the answer should be smaller than
the larger of the two numbers. When you multiply two positive numbers, each
larger than 1, the result should be larger than either of the numbers, and dividing
one positive number by another that is larger than 1 should produce a result that
is less than the first number.

In addition, it is good practice to estimate the answer to a question using simpler
numbers. For example, you could estimate the answer to 96 ÷ 47 by working out
(in your head) 100 ÷ 50, which is 2. You would expect the answer to 96 ÷ 47 to
be fairly close to the estimated answer.
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Negative numbers 2
Negative numbers arise in any situation in which we need to talk about numbers
that are less than some agreed reference point (labelled zero). For example, on
the Celsius temperature scale, the reference point 0 ◦C (said as ‘zero degrees Cel-
sius’) is the temperature at which pure water freezes under normal atmospheric
conditions. When the temperature falls five degrees below 0 ◦C, then we say that
it is minus five degrees Celsius, or −5 ◦C, and if it falls even further to ten de-
grees below zero then it is −10 ◦C. So the minus sign in front of a temperature
tells you that it is ‘less than zero’ and the number tells you how many degrees less
than zero. In other words, the larger the number that follows the minus sign, the
further the temperature is below zero degrees.

Mathematically, five degrees below zero means 0 ◦C − 5 ◦C, and if you do this
subtraction the answer is −5 ◦C.

If you are not used to thinking about negative numbers, then it may help to think
in terms of money. If your account is overdrawn by £50, then it has ‘£50 less than
nothing’ in it, and your balance is −£50. You would have to add £50 to bring the
balance up to zero. In a similar way, if the temperature is −50 ◦C (i.e. 50 ◦C ‘less
than nothing’), then you would have to increase the temperature by 50 ◦C to bring
it up to zero.
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A wide range of Celsius temperatures is shown in Figure 2.1. The highest tem-
perature marked is that of boiling water. When temperatures fall below zero, they
are represented by negative numbers; the lower the temperature, the larger the
number following the minus. At the lowest temperature shown, −196 ◦C (i.e. 196
degrees Celsius below zero), nitrogen gas, which is the main component of the air
we breathe, condenses and becomes a liquid.

−200 ◦C

−150 ◦C

−100 ◦C

−50 ◦C

0 ◦C

50 ◦C

100 ◦C 100 ◦C Water boils

58 ◦C Highest recorded air temperature
37 ◦C Human body temperature

0 ◦C Water freezes
−18 ◦C Home freezer

−89 ◦C Lowest recorded air temperature

−196 ◦C Nitrogen condenses

Figure 2.1: Temperatures on the Celsius scale. Note that we always use minus
signs to denote negative temperatures, but we do not generally use plus signs in
front of positive temperatures.
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Question 2.1

In each of the following pairs of temperatures, which value would correspond
to the warmer object?

(a) 57 ◦C and 65 ◦C Answer

(b) 57 ◦C and −65 ◦C Answer

(c) −57 ◦C and −65 ◦C Answer

(d) −57 ◦C and 65 ◦C Answer

Question 2.2 Answer

Arrange the following temperatures in increasing order, i.e. starting with the
lowest temperature and ending with the highest temperature:

210 ◦C, 0 ◦C, −27 ◦C, 1750 ◦C, −85 ◦C, −26 ◦C, −210 ◦C, 85 ◦C.
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2.1 Calculating with negative numbers

You may be required to perform arithmetic operations (addition, subtraction, mul-
tiplication and division) involving negative numbers. There are good reasons why
negative numbers should be handled in the way that they are, but these reasons
can be quite difficult to understand. This booklet simply gives a series of rules to
apply, with examples of each.

Adding a negative number is the same as subtracting the corresponding posi-
tive number.

So, for example:

5 + (−3) = 5 − 3 = 2.
(−5) + (−3) = (−5) − 3 = −8.

Subtracting a negative number is the same as adding the corresponding posi-
tive number.

So, for example,

5 − (−3) = 5 + 3 = 8.
(−5) − (−3) = (−5) + 3 = −2.
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Note the way in which brackets have been used in the examples to make it clear
how the numbers and signs are associated. If you are struggling to see why sub-
tracting 3 from -5 should give -8, whereas adding 3 to -5 gives -2, you may find it
helpful to revisit the financial analogy. If your account is £5 overdrawn and you
spend a further £3, you will end up with an overdraft of £8. However, if your
account is £5 overdrawn and you repay £3, your overdraft will be reduced to £2.

If you multiply or divide two numbers which have the same sign, the answer
is positive.

So, 5 × 3 = 15, as you already know, but also (−5) × (−3) = 15.

8 ÷ 4 = 2, as you already know, but also (−8) ÷ (−4) = 2.

If you multiply or divide two numbers which have different signs, the answer
is negative.

So 5 × (−3) = −15 and (−8) ÷ 4 = −2.
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Question 2.3

Do the following calculations, without using your calculator:

(a) (−3) × 4 Answer

(b) (−10) − (−5) Answer

(c) 6 ÷ (−2) Answer

(d) (−12) ÷ (−6) Answer

Make sure that you know how to input negative numbers into your own calculator.
With some makes of calculator you will be able to enter expressions like those in
Question 2.3 more or less as they are written, with or without brackets. With other
makes you may need to use a key labelled as +/- or ± in order to change a positive
number into a negative one.

Question 2.4

Making sure that you input all the signs, use your calculator to work out the
following:

(a) 117 − (−38) + (−286) Answer

(b) (−1624) ÷ (−29) Answer

(c) (−123) × (−24) Answer
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Fractions, ratios and percentages 3
Fractions, ratios and percentages are all ways of expressing proportions, that is
they show the relationship between two or more numbers.

3.1 Fractions

The term ‘fraction’ means that a quantity is part of a whole, and is the result of
dividing a whole amount into a number of equal parts. So, if you say that you
can eat one-quarter of a pie, written as 1

4 , then you are dividing the pie into four
equal parts and saying that you can eat one of those parts. After you take your
1
4 of the pie, three of the four quarters will remain, so the fraction remaining is
three-quarters or 3

4 . The numbers 1
4 and 3

4 are examples of fractions.

Fractions can be written in two different ways: three-quarters can be written as 3
4

or 3/4. Both forms will be used in this booklet. The first is used when writing out
a calculation, but the second way is sometimes more convenient in a line of text.

Any fraction can be expressed in a variety of equivalent forms. Thus, two-quarters
of a fruit pie, 2/4, means two of the four equal parts, and you know that this is the
same amount as one half, 1/2. So 2/4 and 1/2 are said to be equivalent fractions
because they are of equal value. Figure 3.1 shows four rectangular blocks of
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chocolate, of identical sizes, but divided into different numbers of equal-sized
pieces. The darker areas can be expressed as different fractions, but all of the
darker areas are the same size, so the four fractions are all equivalent. This means
that:

3
8

=
6

16
=

9
24

=
15
40

In words, we would say ‘three-eighths equals six-sixteenths equals nine-twenty-
fourths equals fifteen-fortieths’. Or an alternative way of saying this would be
‘three over eight equals six over sixteen equals nine over twenty-four equals fif-
teen over forty’.

3

8

6

16

9

24

15

40

Figure 3.1: Equivalent fractions of chocolate bars. The darker areas are all the
same size.

Note that you can change 3/8 to the equivalent fraction 6/16 by multiplying both
the number on the top and the number on the bottom by 2. Similarly, you can
convert 3/8 to 9/24 by multiplying both the top and the bottom by 3.
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Question
By what number do you have to multiply both the top and the bottom of the
fraction 3/8 to end up with 15/40?

Answer
5, because 5 × 3 = 15, and 5 × 8 = 40.

If you take any fraction, and multiply both the number on the top of the fraction
and the number on the bottom by the same number – any one you care to choose
– you will produce an equivalent fraction. Thus:

1
3

=
2
6

=
4

12
=

20
60

=
200
600

Here we have multiplied the top and the bottom of the fraction 1
3 in turn by 2 (to

get 2
6 ), then by another 2, then by 5, and finally by 10.

Fractions are usually expressed with the smallest possible whole numbers on the
top and the bottom. Working out the equivalent fraction with these smallest num-
bers is really a matter of finding numbers that can be divided into both the number
on the top of the fraction and the number on the bottom. For example,

60
300

=
6

30
=

3
15

=
1
5

so these are all equivalent fractions.

Here we first divided the numbers on the top and the bottom of the first fraction
by 10 to get 6

30 , then we divided both numbers by 2 to get 3
15 , and finally by 3 to

end up with 1
5 .
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Note that all four of these fractions are equivalent, but we would normally use the
fraction with the lowest numbers, 1

5 .

Working out an equivalent fraction with the smallest whole numbers can be done
step by step, as in the example above. It’s best to start by seeing if you can divide
by simple numbers, like 10, 2, 5. Thus, if the numbers on the top and the bottom
of a fraction both end in zero, then you can divide them both by 10 (first step in
the example above). If they are both even numbers, then you can divide them by 2
(second step above). If both end in either a five or a zero, then they can be divided
by five.

So, to express 10
40 with the smallest whole numbers, you would divide the top and

the bottom by 10. This division can be illustrated by ‘cancelling out’ the zeros by
crossing them through with a diagonal line:

1��0
4��0

=
1
4

This cancelling process is the same as dividing – in this case dividing by 10. If
there are more zeros, then more cancelling is possible. Thus:

300
2000

=
3��00

20��00
=

3
20
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Question

How would the fractions
450

1050
and

420
660

normally be expressed?

Answer
450

1050
=

45
105

=
9

21
=

3
7

and
420
660

=
42
66

=
21
33

=
7

11
.

In the first case, we have divided in turn by 10, by 5 and by 3; in the second
case, we have divided by 10, then 2 and then 3.

Until now, we have only considered fractions for which the number on the top
is smaller than the number on the bottom, so these fractions are part of a whole.
However, it is possible to have a fraction in which the number on the top is larger
than the number on the bottom, such as 5

4 or 13
8 , and these are sometimes called

‘improper fractions’. The fraction 5
4 simply means five-quarters (of a pie, or what-

ever); only four-quarters can come from a whole pie, so the fifth quarter must
come from another pie.

Question 3.1 Answer

Which of the following are equivalent fractions?

3
4

;
60
80

;
75

100
;

6
4

;
300
400

;
3
8

.
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3.2 Ratios

Looking again at the chocolate bars in Figure 3.1, you can see that 3 out of 8
pieces are darkened in the first, 6 out of 16 in the second, 9 out of 24 in the third
and 15 out of 40 in the fourth. These pairs of numbers, which form equivalent
fractions, are said to be in the same ratio. So any pairs of numbers that form
equivalent fractions are in the same ratio.

Question
Which of the following pairs of numbers are in the same ratio as (6, 20)?

(3, 10); (12, 40); (12, 30); (30, 100); (24, 100).

Answer
6/20 = 3/10 = 12/40 = 30/100, so these are all equivalent fractions, and there-
fore the pairs of numbers from which they are formed are in the same ratio.
Using the lowest whole numbers, we say that these pairs of numbers are all
in the ratio 3 to 10. The fractions 12/30 (= 6/15) and 24/100 (= 6/25) are not
equivalent to 6/20, so (12, 30) and (24, 100) are not in the same ratio as (6,
20).

Ratios are often written as two numbers separated by a colon (:). So, a fraction
such as 3/10 is equivalent to a ratio of 3 to 10 and this is often written as 3 : 10.

You need to take care when asked to give the ratio of two numbers, as the follow-
ing example shows.
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Question
Suppose 2 out of 10 people in the UK drink bottled water. What is the ratio of
people who drink bottled water to those who don’t?

Answer
The ratio is 2 : 8.

Did you fall into the trap and answer 2 : 10? This is the ratio of people who drink
bottled water to the total number of people. Of course if we’d asked what is the
ratio of people who don’t drink bottled water to those who do, the answer would
have been 8 : 2. So, always read the question carefully!

Ratios are particularly useful where the relative proportions of two or more parts
of a whole are being considered. For example, the ratio of males to females in the
general population of the UK is about 1 : 1.

Question 3.2

In a random group of students, 15 were men and 8 were women.

(a) What was the ratio of women to men in the group? Answer

(b) What fraction of the total group were women? Answer
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3.3 Percentages

You have probably met percentages in various contexts, such as a 3% pay rise,
10% interest on a loan, or 20% off goods in a sale. A percentage is a fraction
expressed in hundredths. So 1/2 , i.e. one-half, is 50/100, or fifty-hundredths, and
we say that this is 50 per cent, which is usually written as 50%. This literally
means 50 in every 100. The advantage of using percentages is that we are al-
ways talking about hundredths, so percentages are easy to compare, whereas with
fractions we can divide the whole thing into arbitrary numbers of parts, eighths,
sixteenths, fiftieths, or whatever we choose. It is not immediately obvious that
19/25 is larger than 15/20, but if these fractions are expressed as percentages, i.e.
76% and 75%, respectively, then it is easy to see that the former number is the
larger of the two. But how do we convert fractions to percentages, or percentages
to fractions?

The way that you convert a fraction into a percentage is by multiplying the fraction
by 100%. So to convert 1/2 to a percentage:

1
2
× 100% = 1 ÷ 2 × 100% = 50%

Three-quarters, 3/4, converts to:

3
4
× 100% = 3 ÷ 4 × 100% = 75%

On occasions, you will need to convert a percentage to a fraction, and to do this
you need to remember that a percentage is a fraction expressed in hundredths and
then cancel as appropriate.
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Thus, 75% =
75

100
=

15
20

=
3
4

(having divided the top and the bottom of the fraction by 5, then by 5 again),

and 15% =
15

100
=

3
20

(having divided the top and the bottom by 5).

Question 3.3

Convert the following fractions to percentages:

(a)
7

10
Answer

(b)
9

20
Answer

(c)
13
25

Answer

(d)
63

100
Answer

(e)
140
200

Answer

(f)
30
20

Answer
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Question 3.4

Convert the following percentages to fractions with the smallest possible
whole numbers on the top and the bottom:

(a) 60% Answer

(b) 64% Answer

(c) 65% Answer

(d) 67% Answer
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3.4 Calculating fractions and percentages of numbers

Finally, let’s consider how you would work out what 3
4 , or 75%, of 36 is. First

think about what 3
4 of 36 means. It means divide 36 into 4 equal parts or quarters

(36 ÷ 4 = 9). Then, since we want three-quarters, which is three times as big, we
multiply one of these parts by three (9 × 3 = 27). So 3

4 of 36 is 27. We can write

this calculation as 3
4 × 36, which means the same thing as 3 ×

36
4

, or
3 × 36

4
.

So ‘3
4 of’ a number means multiply that number by 3

4 .

Question

What is
2
3

of 18?

Answer
2
3
× 18 = 12

Working out 75% of a number can be done in a similar way if you remember that

75% =
75

100
. So 75% of 40 is:

75
100
× 40 = 30

Some modern calculators will convert directly between fractions and percentages
and find the percentage of a number at the press of a button. However, it is worth
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making sure that you understand the meaning of fractions and percentages before
letting your calculator do the work for you. This will enable you to check that the
answer you obtain is reasonable, for example, 48% of a quantity should be just
less than half of it.

In summary, you can see that fractions, ratios and percentages are all ways of
expressing a proportion. So, for example, if you eat 1

4 of a pie, the ratio of the
amount you eat to the total pie is 1 : 4, and the percentage that you eat is 25%.

Question 3.5

Work out:

(a)
2
5

of 20 Answer

(b)
7
8

of 24 Answer

(c) 15% of 60 Answer

(d) 60% of 5 Answer
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3.5 Doing calculations with fractions

3.5.1 Adding and subtracting fractions

Suppose we want to add the two fractions shown below:

3
4

+
2
5

We cannot just add the 3 and the 2. The 3 represents 3 quarters and the 2 represents
2 fifths, so adding the 3 to the 2 would be like trying to add 3 apples and 2
penguins – you just can’t do it!

In order to add or subtract two fractions, it is necessary for them both to have
the same denominator (bottom line).

Fractions with the same denominator are said to have a ‘common denominator’.
One way to find a common denominator when adding or subtracting two fractions
is to multiply the top and bottom of the first fraction by the denominator of the
second fraction, and the top and bottom of the second fraction by the denominator
of the first fraction. A return to our example may make this clearer
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3
4

+
2
5

=
3 × 5
4 × 5

+
2 × 4
5 × 4

=
15
20

+
8
20

=
23
20

multiply top and bottom by
5 (the denominator of the
second fraction)

multiply top and bottom by 4
(the denominator of the first
fraction)

Note that the 3
4 and 15

20 are equivalent fractions (Section 3.1) as are 2
5 and 8

20 ,
and that 15

20 and 8
20 can be added without difficulty because they have a common

denominator of 20.

Question 3.6

Work out the following, leaving each answer as the simplest possible fraction:

(a)
2
3

+
1
6

Answer

(b)
3
4
−

1
6

Answer
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3.5.2 Multiplying fractions

The expression ‘three times two’ just means there are three lots of two (i.e. 2 + 2
+ 2). So multiplying by a whole number is just a form of repeated addition. For
example,

3 × 2 = 2 + 2 + 2

This is equally true if you are multiplying a fraction by a whole number:

3 ×
4
5

=
4
5

+
4
5

+
4
5

=
12
5

We could write the 3 in the form of its equivalent fraction 3
1 and it is then clear

that the same answer is obtained by multiplying the two numerators together and
the two denominators together:

3
1
×

4
5

=
3 × 4
1 × 5

=
12
5

In fact, this procedure holds good for any two fractions.

To multiply two or more fractions, multiply numerators (top lines) together
and also multiply the denominators (bottom lines) together.
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So

2
5
×

3
7

=
2 × 3
5 × 7

=
6

35

Sometimes cancelling is possible

1
4
×

2
5

=
1 × ��2 1

��4 2 × 5
=

1 × 1
2 × 5

=
1
10

3.5.3 Dividing fractions

The meaning of an expression such as 4 ÷ 1
2 is not immediately obvious, but a

comparison with a more familiar expression, say 6 ÷ 2 may help. 6 ÷ 2 asks us
to work out how many twos there are in 6 (the answer is 3). In exactly the same
way, 4÷ 1

2 asks how many halves there are in 4. Figure 3.2 illustrates this in terms
of circles. Each circle contains two half-circles, and 4 circles therefore contain 8
half-circles. So

4 ÷
1
2

= 4 ×
2
1

= 8

Figure 3.2: Four circles each containing two half-circles.
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This can be extended into a general rule:

To divide by a fraction, turn it upside down and multiply.

So

5 ÷
8
3

= 5 ×
3
8

=
5 × 3

8
=

15
8

And

2
3
÷

4
5

=
2
3
×

5
4

=
��2 1 × 5
3 × ��4 2

=
1 × 5
3 × 2

=
5
6

Finally remembering that 3 can be written as 3
1

1
2
÷ 3 =

1
2
÷

3
1

=
1
2
×

1
3

=
1 × 1
2 × 3

=
1
6

Question 3.7

Work out the following, leaving each answer as the simplest possible fraction:

(a)
2
7
÷

1
4

Answer

(b)
2
3
÷

3
4

Answer

(c)
3
4
÷ 5 Answer

41



Decimal numbers and decimal
places 4
We introduced fractions in the previous section, and a fraction like 1

2 can also be
written as 0.5. So 1

2 , 50% and 0.5 all mean the same thing and the number 0.5 is
an example of a decimal number. Decimal numbers are important as calculators
use them in any calculation involving not just whole numbers. They are used
throughout science, and you need to become proficient at adding, subtracting,
multiplying and dividing decimal numbers. Fortunately, your calculator will take
the pain out of the calculations, so you can concentrate on understanding what the
numbers mean.

Decimal numbers consist of two parts separated by what is called a decimal point.
When printed, a ‘full stop’ is used for the decimal point. Here are four examples,
with words in brackets indicating how you say the numbers: 0.5 (‘nought point
five’), 2.34 (‘two point three four’), 45.875 (‘forty-five point eight seven five’),
and 234.76 (‘two hundred and thirty-four point seven six’). Note that the part of
the number before the decimal point is spoken as a whole number, and the part
after the point is spoken as a series of individual digits. It’s also worth noting
that in parts of Europe outside the UK, a comma is used instead of a full stop in
decimal numbers.
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What do these numbers mean? Well, the part of the number before the decimal
point represents a whole number, and the part after the decimal point represents
the fraction, something between nought and one, that has to be added on to the
whole number. Thus if you divide 13 by 2 you get 61

2 if you use fractions, but 6.5
if you use a calculator; the 0.5 is equivalent to the half. Note that when there is no
whole number, i.e. the number is less than one, it is usual to print or write a zero
in front of the decimal point, otherwise the decimal point might be overlooked.
(Your calculator, however, may not always show the zero.) If you divide 13 by 4,
then with fractions you get 31

4 and with a calculator you get 3.25, so a quarter is
the same as 0.25.

Conversion of any fraction to a decimal number is straightforward with a calcu-
lator. All you have to do is divide the number on the top of the fraction by the

number on the bottom. Try this for yourself: with the fraction
15
40

, you should
obtain the decimal number 0.375.
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Thousands Hundreds Tens Units Point Tenths Hundredths Thousandths

7 6 5 4 . 3 2 1

7 × 1 000 6 × 100 5 × 10 4 × 1 3 × 1
10 2 × 1

100 1 × 1
1000

= 7 000 = 600 = 50 = 4 = 0.3 = 0.02 = 0.001

total = 7 654 total = 0.321

Table 4.1: The meaning of each digit in the number 7 654.321.

Now just as each digit that
comes to the left of the
decimal point has a precise
meaning that depends on
where it comes in the or-
der, so also does each digit
that comes after the dec-
imal point. These mean-
ings are summarised in Ta-
ble 4.1 for the number
7 654.321.

The 4 immediately before the decimal point means 4 units (or 4 ones), which is
simply 4; the 5 signifies 5 tens, or 50; the 6 signifies 6 hundreds, or 600; and the
7 signifies 7 thousands, or 7 000. So 7 654 means 7 000 + 600 + 50 + 4.

In a similar way, the 3 after the decimal point means 3 tenths, or 3
10 , the 2 means

2 hundredths, or 2
100 , and the 1 means 1 thousandth, or 1

1000 . And, just as 7 654
means 7 thousands plus 6 hundreds plus 5 tens plus 4 units, so 0.321 means 3
tenths plus 2 hundredths plus 1 thousandth. So

0.321 =
3

10
+

2
100

+
1

1000

Now, to add fractions, we first have to convert them to equivalent fractions with the
same number on the bottom. In this case, we shall convert the first two fractions
to equivalent fractions with 1 000 on the bottom.
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Since
3

10
is an equivalent fraction to

300
1000

, and
2

100
is equivalent to

20
1000

, then

0.321 =
300

1000
+

20
1000

+
1

1000
=

(300 + 20 + 1)
1000

=
321

1000

Here, we have added the numbers on the tops of the fractions together to get the
total number of ‘thousandths’, but we don’t add the numbers on the bottoms of
the fractions since these just tell us that we are adding ‘thousandths’ in each case.

This shows that converting a decimal number to a fraction is really quite straight-
forward; you just take the numbers after the decimal point (321 in the example
above) and divide by 1 followed by the same number of zeros as there were digits
after the decimal point (three in this case), so

0.321 =
321

1000
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Question 4.1

Convert the following fractions to decimal numbers:

(a)
1
8

Answer

(b)
1
4

Answer

(c)
3
4

Answer

(d)
1

10
Answer

(e)
2

10
Answer

(f)
3

10
Answer

(g)
1

100
Answer

(h)
3

100
Answer

(i)
5

100
Answer

(j)
3

1000
Answer
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Question 4.2

Convert the following decimal numbers to fractions, and convert each fraction
to the smallest whole number on the top and the bottom:

(a) 0.7 Answer

(b) 0.8 Answer

(c) 0.2 Answer

(d) 0.22 Answer

(e) 0.222 Answer

Question 4.3

Convert the following percentages to decimal numbers:

(a) 79% Answer

(b) 35% Answer

(c) 3% Answer

(Hint: you may find it helpful to start by converting the percentages to frac-
tions, as discussed in Section 3.)
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A calculator does arithmetic with decimal numbers in the same way as it does
with whole numbers, including carrying out operations in the right order. The
only difference is that you have to key in the decimal point, using the decimal
point key on the calculator, at the appropriate place in decimal numbers.

As an example, try multiplying 2.36 and 43.7. The result, 103.132, should appear
in the display.

Question 4.4

Work out the following decimal calculations:

(a) 1.35 + 12.76 Answer

(b) 24.31 − 13.94 Answer

(c) 3.05 × 2.2 Answer

(d) 499.56 ÷ 27.6 Answer
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4.1 Decimal places and rounding

So far in this section, you have met decimal numbers with one, two or three digits
after the decimal point. The number of digits after the decimal point is termed
the number of places of decimals. For example, we say that the number 1.735 is
expressed to three decimal places. 7 is in the first decimal place, 3 in the second
decimal place and so on.

Now often when you do a calculation your calculator will display an answer with
perhaps 7 decimal places – for example, it will indicate that 1

3 is 0.333 333 3.
(Note the convention of leaving a gap after every third digit after the decimal
point in the same way that a gap is left every third digit before the decimal point,
counting from the decimal point in each direction.) In most cases, it is not neces-
sary to give all of these digits. We might be happy to know that 1

3 is about 0.33,
and to forget about the thousandths and the ten-thousandths and so on. Or some-
times it is enough to know that 1

3 is about 0.3. If we approximate in this way, we
say that we are rounding the number. But rounding is a bit more complicated than
just chopping off the unwanted digits.

If we wanted to round 1.2645 to two decimal places, we would need to look at the
first digit to be removed – 4 in this case. If the first digit removed is a 0, 1, 2, 3 or
4, then the last remaining digit – 6 in this case – is left unchanged. So the answer
would be 1.26.

However, if the first of the digits that are removed is a 5, 6, 7, 8 or 9, then the last
remaining digit is increased by one. So, for example, if 1.264 5 is rounded to one
decimal place, the answer is 1.3 – the 2 is rounded up to 3 because the first digit
removed was 6.
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The reason for rounding up when the first digit removed is 5 or greater is clear if
you bear in mind that the number that is midway between 1.2 and 1.3 is 1.25. So
all numbers between 1.25 and 1.3 are closer to 1.3 than they are to 1.2. It therefore
makes sense to round up the last remaining digit whenever it has been followed
by a digit between 5 and 9. Note that by convention, the digit 5 is rounded up.

Sometimes, rounding a decimal number will produce a zero as the final digit;
for example, both 1.803 and 1.798 become 1.80 when rounded to two decimal
places. Don’t be tempted to ignore the final zero in these cases though, because
it contains important information about the decimal number. Quoting a length as
1.80 metres tells you that the measurement is between 1.795 0 metres and 1.804 9
metres because numbers within this range are equal to 1.80 metres when rounded
to two decimal places. Quoting the length as 1.8 metres, on the other hand, means
that it is between 1.750 metres and 1.849 metres, which is a much larger range.

Question 4.5

Round each of the following numbers to one decimal place, to two decimal
places, and to three decimal places:

(a) 0.264 8 Answer

(b) 0.825 51 Answer

(c) 21.118 4 Answer

50



Units of measurement 5
If you were told that the length of a piece of string was 37, you would be
rather baffled. 37 what? Is it 37 metres, 37 centimetres, 37 feet, or even
37 miles? Similarly, if somebody says that a friend weighs 100, what
does this mean? These examples highlight the importance of having
defined units with which to make measurements and the importance
of quoting the units when you want to communicate what you have
measured.

In science, the units used are known as SI units, which is an abbre-
viation for ‘Système Internationale d’Unités’ (International System of
Units). In 1960, an international conference formally approved this set
of metric units as standard, so replacing the many different national sys-
tems of measurement that had been used in science up to that time. The
advantage of having a standard set of units is that everyone uses them,
and there is no need to convert laboriously from one system to another
to compare results in different countries. So although in everyday life
in the UK people may still buy milk and beer in pints, and measure dis-
tances between towns in miles, in the scientific community SI units are
used almost exclusively.
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So what are these units? At this stage, we shall just introduce the SI units of
length, time and mass.

• The basic SI unit of length is the metre, which is abbreviated to m.

• The basic SI unit of time is the second, which is abbreviated to s.

• The basic SI unit of mass is the kilogram, which is abbreviated to kg.

Although a metre is a conveniently sized unit for measuring the height of a person
or the width of a room, it is the wrong sort of size to use for quoting the distance
between London and Edinburgh, or the breadth of a pinhead. It is therefore con-
ventional and convenient to use larger and smaller multiples of the metre when
appropriate; note that these are also SI units. So, for example, large distances can
be measured in kilometres (km), and small distances or lengths can be measured
in millimetres (mm). The prefix kilo means ‘one thousand’, so a kilometre is one
thousand metres. The prefix milli means ‘one-thousandth’, so a millimetre is one-
thousandth of a metre. Put another way, one metre is one thousand millimetres.
Therefore, 1 km = 1 000 m, 1 mm = 1

1000 m and 1 m = 1 000 mm.

Question
How many millimetres are there in 1 kilometre?

Answer
1 km = 1 000 m and 1 m = 1 000 mm,
so 1 km = 1 000 × 1 000 mm = 1 000 000 mm.
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Another common prefix that you may have met is centi (as in centimetre, abbre-
viated to cm), which means ‘one-hundredth’. So 1 cm = 1

100 m, and this means
that:

100 cm = 100 × 1
100 m = 100

100 m = 1 m, i.e. 1 m = 100 cm.

Question
How many centimetres are there in 25 metres?

Answer
Since 1 m = 100 cm, 25 m = 25 × 100 cm = 2 500 cm.

If you didn’t know how many millimetres there were in a centimetre, you could
use the definitions to work this out. From the definitions,

1 m = 100 cm = 1 000 mm

So if we divide each of these equal lengths by 100, then

1
100

m =
100
100

cm =
1 000
100

mm

which gives
1

100
m = 1 cm = 10 mm

This means that there are 10 millimetres in 1 centimetre. Alternatively, if you
want to know how many centimetres are equivalent to 1 millimetre, you can
start from the equation 1 cm = 10 mm and divide these equal lengths by ten,
so 1

10 cm = 1 mm, or 1 millimetre = 1
10 centimetre.

53



Question
How many centimetres are there in 350 millimetres?

Answer
Each millimetre is equal to 1

10 cm, so we need to multiply the number of mil-
limetres (350) by 1

10 cm. So 350 mm = 350 × 1
10 cm = 350

10 cm = 35 cm.

In general, we use the abbreviations for units in all calculations, like the ones
above. Within the main text, we sometimes use the full word and sometimes
the abbreviation, though as the module progresses we shall use the abbreviations
more frequently. Most importantly, you can also see from these examples that the
abbreviations for units are both singular and plural, so ‘m’ means metre or metres.

The relationships between the four units of length that have been introduced are
summarised in Table 5.1.

1 km = 1 000 m = 100 000 cm = 1 000 000 mm
1

1 000 km = 1 m = 100 cm = 1 000 mm
1

100 000 km = 1
100 m = 1 cm = 10 mm

1
1 000 000 km = 1

1 000 m = 1
10 cm = 1 mm

Table 5.1: Summary of relationships between four units of length.

The basic SI unit of time, the second (s), will be familiar from everyday life.
Longer time intervals may be measured in minutes, hours, days, or years, but
these are not SI units. Shorter times are measured in smaller multiples (or sub-
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multiples) of the second. Thus, a millisecond (ms) is one-thousandth of a second,
just as a millimetre is one-thousandth of a metre.

You may have been surprised that we said that the kilogram is the SI unit for
mass, rather than the unit for weight. After all, in everyday usage we talk about
somebody’s weight being so many kilograms. However, in scientific use the term
weight means the downward pull on an object due to gravity, e.g. the downward
pull that makes an apple fall to the ground. This means that your weight would
decrease if you went to the Moon, where gravity is only about 1/6 as strong as
on Earth. Your mass, however, is determined by the amount of matter in your
body, and, since this doesn’t depend on gravity, your mass is the same wherever
you are in the Universe. Weighing scales are always marked in units of mass, e.g.
kilograms, so to be scientifically correct you should say that somebody has a mass
of 55 kilograms, rather than saying that their weight is 55 kilograms.
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Now just as the kilometre is equal to one thousand metres, so the kilogram is
equal to one thousand grams, 1 kilogram = 1 000 grams. You will have seen the
number of grams quoted on all kinds of packaged food. Very small quantities
are measured in milligrams, where one milligram (mg) is one-thousandth of a
gram, 1 milligram = 1

1000 gram. So, using abbreviations, 1 kg = 1 000 g, and
1 mg = 1

1 000 g.

Question 5.1

Complete the blanks in the following relationships between units:

(a) 5 km = . . . m = . . . cm = . . . mm Answer

(b) . . . kg = 3 000 g = . . . mg Answer

(c) 25 s = . . . ms Answer

Before we leave the discussion of units, there is one other important point to re-
member about the relationship between units. Suppose you had to add together
100 cm and 2 m, what would be the first step you would need to take? You would
convert 100 cm to 1 m, so the calculation becomes 1 m + 2 m = 3 m. Alterna-
tively, you would convert 2 m to 200 cm, so 100 cm + 200 cm = 300 cm. The
same is true for all units, not just the units of length.
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Question 5.2

Try the following calculations, which all involve changes to units:

(a) 7 kg + 4 000 g Answer

(b) 55 cm − 40 mm Answer

(c) 20 s − 1 000 ms Answer

5.1 Units in calculations

Suppose you walk a distance of 100 metres in a time of 50 seconds. Your average
speed is given by dividing the distance by the time taken; in this case, 100 divided
by 50 gives 2. But 2 what? Again, the answer needs to be quoted with units in
order to be meaningful. Fortunately, the units of the answer can be found very
easily; we divided the distance by the time taken and we can treat the units in a
similar fashion. The units of the answer are metres divided by seconds, frequently
written as m/s and said as ‘metres per second’. Rather than treating the numbers
and units separately, it is better to include units as part of the calculation itself.
So, in the example we have just been considering:

average speed =
100 m
50 s

= 2
m
s

, more usually written as 2 m/s.

In the same way, if we multiply two lengths (measured in metres) together to give
an area (see Chapter 6), it is obvious from the calculation that the units of the

57



answer are m × m, more usually written as m2 and said as ‘metres squared’ or
‘square metres’. For example:

4 m × 3 m = 12 m ×m = 12 m2

Finally, suppose that we want to find out what fraction of a particular garden
fertiliser is nitrogen, and that we know a 3 000 gram bag of the fertiliser contains
210 grams of nitrogen. To find the fraction of the total mass that is nitrogen, we
need to divide 210 grams by 3 000 grams:

210 ��g
3 000 ��g

=
21��0

300��0
=

21
300

=
7

100

Notice that in the first step above we cancelled the unit of grams, since this was
the same on the top and the bottom of the fraction. Units can be cancelled in the
same way as numbers, and in this case the correct final answer is a fraction with
no units. 7

100 (i.e. 7%) of the mass of the fertiliser is nitrogen.

Question 5.3

Complete the following calculations, giving your answers with appropriate
units:

(a) 3 mm × 2 mm Answer

(b) 45 km ÷ 3 hour Answer

(c) 12 000 kg ÷ 2 m3 Answer

(d) 10 km ÷ 2 km Answer

58



Measuring areas and volumes 6
6.1 Area

For squares and rectangles, the area is found by multiplying the length by the
width. So a simple square with 1 m long sides (Figure 6.1), has an area of 1 m ×
1 m = 1 m2. In SI units, area is measured in square metres.

1m

1m

1m2

Figure 6.1: One square metre (1 m2)
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The rectangular garden pond shown in Figure 6.2 has an area of 3 m × 4 m =

12 m2, and you can see that it is made up of 12 squares, each with sides 1 m long.

4m

3m

12 m2

Figure 6.2: Plan of a rectangular garden pond of area 12 m2.

Question
What is the area of a rectangular garden pond that measures 5 m × 4 m?

Answer
The area is 20 m2.
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The rectangular garden pond shown in Figure 6.3 has an area of 3.5 m × 4.2 m =

14.7 m2, which you can check with your calculator. The area is still the length
multiplied by the width, and if you count up 12 whole squares and eight part
squares you should be able to see that the pond covers the equivalent of about 15
whole squares, each of which has 1 m side length.

4.2m

3.5m

14.7 m2

Figure 6.3: Plan of a rectangular garden pond of area 14.7 m2.
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Question
There are two ways of calculating the area of the L-shaped
garden pond in Figure 6.4; can you see what these are?

Answer
You could think of the pond as being a large rectangle, with a
smaller rectangle taken out of it, as shown in Figure 6.5a. Or
you could think of it as being made up of two rectangles, so
that its total area is the sum of the areas of the two parts, as
shown in Figure 6.5b. 1m

2m

2m

3m

3m

1m

Figure 6.4: Plan of an L-shaped
garden pond.

2m

2m

1m

3m

3m

(a)

3m

2m

1m

1m
(b)

Figure 6.5: Two ways of calculating the area of an L-shaped garden pond.
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We can check that these two ways of calculating the area give the same answer.

Following the first method, in Figure 6.5a, the area is: 3 m × 3 m minus 2 m ×
1 m. Adding brackets to a problem of this type makes it look clearer and also em-
phasises the mathematical rule of carrying out the multiplying before subtracting:

area = (3 m × 3 m) − (2 m × 1 m) = 9 m2 − 2 m2 = 7 m2

If you work this out on your calculator, brackets are not essential because your
calculator follows the mathematical rules and will do the multiplying before the
subtracting.

Following the second method, in Figure 6.5b, the area is: 2 m × 3 m plus 1 m ×
1 m, and again if we add brackets it makes the problem look clearer:

area = (2 m × 3 m) + (1 m × 1 m) = 6 m2 + 1 m2 = 7 m2
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The concept of area is useful even for irregular-shaped objects; the irregular-
shaped pond in Figure 6.6 has an area of about 5 square metres, and again you
can verify this approximately, by counting up the metre squares and part squares.

1 m2

Figure 6.6: An irregular-shaped pond with an area of about 5 square metres
(5 m2). The dotted square is 1 m2.
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6.2 Volume

Volume is a measure of the space that a three-dimensional object occupies. The
volume of a rectangular block is found by multiplying its length by its width
by its height. A simple cube with 1 m long sides (Figure 6.7) has a volume of
1 m × 1 m × 1 m = 1 m3 (said as ‘metre cubed’ or ‘cubic metre’). In SI units,
volume is measured in cubic metres.

1 m

1 m

1 m

Figure 6.7: A cube with 1 m long sides and a volume of 1 cubic metre (1 m3).
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The fish tank shown in Figure 6.8 has a volume of:

3 m × 2 m × 1 m = 6 m3

and 6 cubes with 1 m sides could, in principle, be neatly stacked in the tank, as
the dashed lines on the diagram indicate. For any rectangular block-like structure,
such as a brick or a plank of wood, you can use the same method for measuring
the volume: just multiply together the length, the width and the height, as we did
for the tank in Figure 6.8.

1 m

2 m
3 m

Figure 6.8: A fish tank and its dimensions.

Question
Suppose you had measured the dimensions of a tank in centimetres, what
would be the unit of its volume?

Answer
The unit would be cm × cm × cm, or cubic centimetres, which is abbreviated
to cm3.
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However, if you had measured one dimension in mm and the other two dimen-
sions in cm, then before calculating the volume you would have to ensure all the
dimensions were in the same unit.

Question
What is the volume of a carton of fruit juice that has length 8 cm, width
45 mm, and height 12 cm?

Answer
Since 45 mm = 4.5 cm, volume of carton = 8 cm × 4.5 cm × 12 cm =

432 cm3.
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Unless you’re in the building trade, you are probably not used to measuring vol-
umes in cubic metres. A unit that is much more commonly used for measuring
volumes of liquids is the litre (abbreviated to l). Fruit juices and emulsion paint,
for example, are sold in litre volumes. A litre is the volume of a cube that has
10 cm sides.

If you think about stacking cubes with 10 cm long sides in a 1 m cube (Figure
6.9), then you can see that we would need 10×10×10 = 1000 of the 10 cm cubes
to fill a cubic metre (1 m3), so

1 000 litres = 1 cubic metre(1 m3)

1 m

1 m

1 m

cube with 10 cm sides

Figure 6.9: How many of the small 10 cm cubes could be stacked in 1 m3?
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Question
How many cubic centimetres (cm3) are there in 1 litre?

Answer
A cube with 10 cm sides has a volume of 1 litre. If you think about stacking
1 cm cubes in a 10 cm cube, then you can see that there are 10×10×10 = 1 000
of the 1 cm cubes in 1 litre, so 1 000 cm3 = 1 litre.

Question 6.1 Answer

A rectangular swimming pool has the following dimensions: 6 m long by 7 m
wide and 2 m deep. What is the area of the bottom of the pool and what is the
volume of the pool?

Question 6.2 Answer

A reservoir is known to have the capacity to store 2.5 million litres of water.
How many cubic metres is this?
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Scientific notation 7
7.1 Going up: powers of ten for large numbers

It is estimated that the total volume of water stored on the Earth is 1 460 000 000 km3.

When dealing with large numbers like one thousand four hundred and sixty mil-
lion (1 460 000 000), it becomes tedious to write out the number in words or to
keep writing out all of the zeros. Worse still, it is very easy to lose some of the
zeros or add extra ones by mistake. Fortunately, we can refer to large numbers
without having to write out all of the zeros. The powers of ten notation is less
prone to errors and tedium because it removes the zeros. We will introduce the
powers of ten notation with some numbers more manageable than 1 460 000 000,
though.

One thousand is ten times ten times ten:

10 × 10 × 10 = 1 000

We can use powers notation (introduced in Section 1.2) to write 1000 = 103.
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Question
How do you think you would write 100 in powers of ten?

Answer
Two tens are multiplied together to give one hundred (10 × 10 = 100) so the
superscript after the 10 must be 2. That’s 102.

When expressing 100 and 1 000 in powers of ten, there are no great savings on
writing zeros, but what about one million (1 000 000)? One million is the product
of multiplying together six tens:

10 × 10 × 10 × 10 × 10 × 10 = 1 000 000

so it is written as 106. Now you begin to see the benefit of the powers of ten
notation.

One thousand is often written not just as 103 but as 1 × 103. Spoken aloud, this
would be expressed, ‘one times ten to the power three’ or just ‘one times ten to the
three’. Likewise one million is either 1×106 or simply 106. Now we can give two
alternative explanations that may help you to get to grips with powers of ten. The
power of ten shows how many times 1 has been multiplied by 10. Taking 1 × 103

as an example, 1 000 is seen to be 1×10×10×10. In a second view, the power of
ten shows how many places the decimal point has to move to the right to give the
actual number. If we write 1 as 1.0 to remind ourselves where the decimal point
is, then one move to the right would turn 1.0 into 10.0, a second move would give
100.0 and a third move would give 1 000.0, that is, one thousand.

1 . 0 0 0
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You do not have to recall both of these ways of understanding powers of ten; just
use the one that suits you best, or develop your own way of fixing the idea in your
armoury of mathematical techniques.

Let’s go back to the total amount of water on the Earth. Using the powers of ten
notation, 1 460 000 000 could be written as 1.46 × 109. A significant saving on
zeros! The complete number would be spoken as ‘one point four six times ten to
the power 9’ or just ‘one point four six times ten to the nine’. The power of 9
tells us how many times 1.46 has been multiplied by 10 to give the final number
of 1 460 000 000. It is nine times. That is, our number is comprised of:

1.46 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10

To see clearly that this expression is still one thousand four hundred and sixty
million, it helps to begin with 1.46 and work our way to the number we want by
multiplying each time by ten:

1.46
1.46 × 10 = 14.6 = 1.46 × 101

1.46 × 10 × 10 = 146 = 1.46 × 102

1.46 × 10 × 10 × 10 = 1460 = 1.46 × 103

If we carry on doing this, we end up with:

1.46 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10
= 1 460 000 000

= 1.46 × 109
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Alternatively, you can think of each increase by one in the power of ten as moving
the decimal point one place to the right. That is, if you multiply 1.46 by 10 the
decimal point moves one place to the right, giving 14.6.

1 . 4 6

Likewise, to multiply 1.46 by one thousand, the decimal point moves three places
to the right, giving 1 460.0. In the powers of ten notation, this is written 1.46×103.

1 . 4 6 0 0

There is a convention called scientific notation that is used when writing a number
with a power of ten. Scientific notation requires the number accompanying the
power of ten to be less than 10 but equal to or greater than 1. Let’s take the
example of one million. It could be correctly expressed as 1 × 106, 10 × 105,
100 × 104, 1 000 × 103, and so on, or even as 0.1 × 107, but only the first of
these obeys the convention of scientific notation and this is the one that should be
used. As a second example, it is quite correct mathematically to write 85 000 as
85 × 103, or 0.85 × 105, but correct scientific notation would demand 8.5 × 104.

Scientific notation requires the number accompanying the power of ten to be
less than 10 but equal to or greater than 1.
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Question 7.1

Express the following numbers in scientific notation:

(a) 100 000 000 Answer

(b) 400 000 000 000 Answer

(c) 35 000 Answer

(d) 95 × 105 Answer

(e) 0.51 × 103 Answer

Question 7.2

Write out in full the numbers corresponding to:

(a) 7.3 × 104 Answer

(b) 3.6 × 106 Answer

(c) 4.44 × 105 Answer

(d) 6.05 × 103 Answer
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Question 7.3 Answer

The average distance of the Earth from the Sun is 150 000 000 000 metres.
Express this number in a more concise form that obeys the convention of sci-
entific notation.

7.2 Going down: powers of ten for small numbers

Let’s see how the powers of ten notation can be extended to cover small numbers,
such as 0.000 000 000 25 m (the diameter of a water molecule).

Write down the next two numbers in each of the following two sequences.

10 000 1 000 100 . . . . . . . . . . . . . . . . . .
1 × 104 1 × 103 1 × 102 . . . . . . . . . . . . . . . . . .

In the first sequence, each successive number is divided by 10 (i.e. had one zero
taken off the end) so the number that follows 100 is 100

10 = 10. The next number
in that sequence must result from another division by 10. That is, we must divide
10 by 10 and 10

10 = 1. Therefore, the second answer is 1. In the second sequence
of numbers, each successive number has 1 subtracted from its power, so the first
answer is 1 × 101 because 2 − 1 = 1. For the second answer, we must subtract 1
from the power 1. Because 1 − 1 = 0, the next answer is 1 × 100.

In fact, both sequences are the same because 10 000 is 1 × 104, 1 000 is 1 × 103,
100 is 1 × 102, and 10 is 1 × 101. The implication is that 1 = 1 × 100 and
hence 100 = 1. This makes perfectly good sense if you recall that, in the second
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sequence given above, the power is the number of times that 1 is multiplied by
ten (e.g. 102 = 1 × 10 × 10). For 1 × 100, 1 is multiplied by 10 no times at all,
leaving it as 1.

Why stop at 1 or 100? Using the same rules, write down the next number in each
of these sequences.

100 10 1 . . . . . . . . .
1 × 102 1 × 101 1 × 100 . . . . . . . . .

In the first sequence, dividing 1 by 10 gives 1
10 or 0.1 as the next number. In this

box, we’re keeping to decimals, so the answer we want is 0.1. But what about
the second sequence? The answer is more straightforward than it may seem.
We continue to subtract 1 from the powers of ten so that the next number in the
sequence has a negative power of ten (1×10−1) because 0−1 = −1. Remembering
that the two sequences are equivalent, it seems that 1×10−1 = 0.1. This is exactly
right! We could equally write 10−1 = 0.1.

Just as a positive power of ten denotes how many times a number is multiplied by
10, so a negative power of ten denotes how many times a number is divided by
10. For 10−1, we must divide 1 by 10 just once and we end up with 0.1.
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Question
What is the meaning of 10−2?

Answer
Because the power is now −2, we must divide 1 by 10 twice.
That is, 1 ÷ 10 ÷ 10 = 0.01.

Another way to think about powers of ten for very small numbers involves shifting
the decimal point. A negative power of ten denotes the number of places that the
decimal point moves to the left. For example, think of 1 × 10−2, which we will
write as 1.0×10−2 to remind us of the position of the decimal point. Starting with
the number 1.0, the power of −2 requires us to move the decimal point 2 places
to the left. One place to the left gives 0.1 and two places 0.01.

0 0 1 . 0

We therefore have 10−2 = 0.01.

Let’s try an example. Suppose a raindrop has a breadth of about 0.002 m. This
distance could be given in scientific notation as 2 × 10−3 m. This is clear from the
following series.

Start with: 2

Divide by ten: 2 ÷ 10 = 0.2 = 2.0 × 10−1

Divide by ten again: 2 ÷ 10 ÷ 10 = 0.02 = 2.0 × 10−2

And again: 2 ÷ 10 ÷ 10 ÷ 10 = 0.002 = 2.0 × 10−3
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Alternatively, in considering the meaning of ‘two times ten to the power minus
three,’ you may wish to start with the number 2.0 and move the decimal point
three places to the left to give 0.002.

You know from Section 7.1 that when expressing large numbers in scientific no-
tation, the power of ten (which is positive) denotes the number of places that the
decimal point moves to the right. Similarly, when expressing small numbers in
scientific notation, a negative power of ten denotes the number of places that the
decimal point moves to the left.

You have seen that a negative power of ten tells you how many times you need to
divide by ten, so that

0.001 = 10−3 = 1 ÷ 10 ÷ 10 ÷ 10 =
1

1 000
But, of course, 1 000 = 103, and so

0.001 = 10−3 =
1

1 000
=

1
103 and so 10−3 =

1
103

This relationship between positive and negative powers of ten is quite general, so

10−6 =
1

106 , 10−8 =
1

108 , 10−13 =
1

1013 , and so on.

Convention requires that, when writing large numbers in scientific notation, the
power of ten should be accompanied by a number that is equal to or greater than
1 but less than 10. The same convention is used when dealing with small num-
bers and hence negative powers of ten. This is why 0.002 m, the breadth of the
raindrop, is given in scientific notation as 2 × 10−3 m, and not as 0.2 × 10−2 m or
20 × 10−4 m.
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Question 7.4

Express the following measurements in scientific notation:

(a) a water molecule, about 0.000 000 000 25 m across; Answer

(b) an average-sized sand grain on a gently sloping beach, about
0.000 25 m across;

Answer

(c) the size of one particle of clay, the main constituent of mud,
about 1/1 000 000 m across;

Answer

(d) the average size of a hailstone, 0.003 5 m across. Answer

Question 7.5

Write out in full the decimal numbers corresponding to:

(a) 7.3 × 10−4 Answer

(b) 2.9 × 10−7 Answer

Question 7.6

Use powers of ten notation to answer the following questions:

(a) How many millimetres are there in one kilometre? Answer

(b) How many kilometres is one millimetre equal to? Answer
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7.3 Using a calculator for scientific notation

In your future studies, you are likely to be doing many calculations with numbers
in scientific notation, so it is important that you know how to input them into your
calculator efficiently and how to interpret the results.

First of all, make sure that you can input numbers in scientific notation into your
calculator. You could do this using the button you used to input powers in Section
1.2, but it is more straightforward to use the special button provided for enter-
ing scientific notation. This might be labelled as EXP, EE, E or EX, but there
is considerable variation between calculators. Make sure that you can find the
appropriate button on your calculator. Using a button of this sort is equivalent to
typing the whole of ‘× 10 to the power’. So, on a particular calculator, keying 2.5
EXP 12 enters the whole of 2.5 × 1012.

To enter a number such as 5 × 10−16 into your calculator, you may need to use
the button labelled something like ± (as used in Section 2.1) in order to enter the
negative power.

To enter a number such as 109 into your calculator using the scientific notation
button, it is helpful to remember that 109 is written as 1×109 in scientific notation,
so you will need to key in something like 1 EXP 9.
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(a)

(b)

(c)

(d)

(e)

e2.5 12

Figure 7.1: Examples of
how calculators might dis-
play the number 2.5×1012.

In addition to being able to enter numbers in scientific notation into your calcula-
tor, it is important that you can understand your calculator display when it gives
an answer in scientific notation. Enter the number 2.5×1012 into your calculator
and look at the display. Again there is considerable variation from calculator to
calculator, but it is likely that the display will be similar to one of those shown in
Figure 7.1. The 12 at the right of the display is the power of ten, but notice that
the ten itself is frequently not displayed. If your calculator is one of those which
displays 2.5× 1012 as shown in Figure 7.1e, then you will need to take particular
care; this does not mean 2.512 on this occasion. You should be careful not to
copy down a number displayed in this way on your calculator as an answer to
a question; this could cause confusion at a later stage. No matter how scientific
notation is entered and displayed on your calculator or computer, when writing
it on paper you should always use the form exemplified by 2.5 × 1012.

Question 7.7

To check that you can use your calculator for scientific notation, do the fol-
lowing calculations:

(a) (4.5 × 104) × (4.0 × 1011) Answer

(b) (6.5 × 10−27) × (2.0 × 10−14) Answer

(c) 108 ÷ (2 × 10−17) Answer
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More about powers and units 8
8.1 Using positive and negative powers with units

Some important general results were introduced in Section 7.2, namely that

100 = 1 and that 10−1 =
1

101 , 10−2 =
1

102 , 10−3 =
1

103 etc.

Note that 101, 100 and 10−1 are rarely used in scientific writing; it is usual to write
simply 10, 1 or 0.1 instead. However, the use of positive and negative powers
provides a useful notation that can also be used with symbols and units.

1
m3 can be expressed as m−3 and

1
s

(which could also be written as
1
s1 ) can also

be expressed as s−1.

This way of converting between positive and negative powers is often used when
expressing units concisely. Let’s take an example that you have already met, the
unit of speed, which is metres per second, abbreviated in Section 5.1 to

m
s

or m/s.
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Question

Can you think of a way to rewrite
m
s

using a negative power?

Answer

Since
1
s

= s−1,
m
s

can be written as m s−1.

The conventional scientific way of expressing the unit of speed is m s−1, and a
variety of units of measurement can be expressed in a similar way using positive
and negative powers.

Notice that we have left a space between m and s−1 in the unit of speed, and we
do this whenever we write a unit that is a combination of two or more other units.
This is different from the way that prefixes for multiples of units are written; they
are always written without a space between the prefix and the basic unit. Thus,
‘ms’ means ‘millisecond’, but ‘m s’ means ‘metre second’. This separation of the
different components of a unit, but not for multiples of units, avoids confusion.
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Question 8.1

Write each of the following using both positive and negative power notation.

For example,
1

5 × 5
=

1
52 = 5−2

(a)
1

2 × 2 × 2 × 2
Answer

(b)
1

m ×m
Answer

Question 8.2

Express the following units using negative powers:

(a) kilometres per hour (written as km/hour in the answer to
Question 5.3b)

Answer

(b) milligrams per litre (note that the abbreviation for milligrams
is mg and the abbreviation for litres is l)

Answer

(c) kilograms per cubic metre (written as kg/m3 in the answer to
Question 5.3c)

Answer
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8.2 Prefixes used with SI units

prefix symbol multiplying factor

tera T 1012 = 1000 000 000 000
giga G 109 = 1000 000 000
mega M 106 = 1000 000
kilo k 103 = 1000
– – 100 = 1
deci d 10−1 = 0.1
centi c 10−2 = 0.01
milli m 10−3 = 0.001
micro µ 10−6 = 0.000 001
nano n 10−9 = 0.000 000 001
pico p 10−12 = 0.000 000 000 001
femto f 10−15 = 0.000 000 000 000 001
atto a 10−18 = 0.000 000 000 000 000 001

Table 8.1: Prefixes used with SI units.

Now that you have met powers of ten, we
can introduce the complete range of prefixes
used with SI units. These are given in Table
8.1.

So, for example, 1 Ms = 1 × 106 s. This is
about 11.5 days.

Question 8.3

Express each of the following in metres,
giving your answers in scientific
notation. Example: 2 km = 2 × 103 m.

(a) 6.1 Tm Answer

(b) 3.5 nm Answer

(c) 1.7 µm Answer
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Significant figures 9
You were introduced, in Section 4.1, to the idea of expressing answers to a spec-
ified number of decimal places. The more precisely you know a number, the
more digits it seems reasonable to include; remember that writing down all the
digits given on a calculator display cannot usually be justified. Quoting answers
to a specified number of decimal places can be helpful, but it can be difficult to
specify precisely how many digits are required. For example, suppose you have
been asked to specify a distance of 34 178.921 metres to two decimal places. In
metres, the correct answer would be 34 178.92 m, but in kilometres the correct
answer would be 34.18 km, and if you were to choose to use scientific notation,
the correct answer would be 3.42 × 104 m.

It is frequently more reliable to quote answers to a specified number of significant
figures where, in straightforward cases, the number of significant figures is found
simply from counting the number of digits. So a temperature of 16.472 3 ◦C could
be quoted to five significant figures as 16.472 ◦C, to four significant figures as
16.47 ◦C, to three significant figures as 16.5 ◦C and to two significant figures as
16 ◦C. The number of significant figures displayed reflects the certainty with
which the value is known; in general the last digit will be somewhat uncertain,
but you can be confident of the other digits.
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Question 9.1

To how many significant figures are each of the following measurements
given:

(a) 5.63 m Answer

(b) 3 567.1 kg Answer

(c) 17 µs Answer

Question 9.2

Express the number 5.683 12 to

(a) four significant figures; Answer

(b) two significant figures. Answer

Specifying the number of significant figures when zeros are involved can be a bit
more tricky, as the following examples indicate:

• 0.082 m: here there are only two significant figures because initial zeros do
not count. These initial zeros tell you only about the size of the number,
and not about the precision to which it is known. The first significant digit
in this value is the 8.

• 50.6 m: there are three significant figures here, since the zero in the middle
of a number counts as a significant figure in the same way as the other digits.
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• 79.0 m: there are three significant figures here too; a zero that is at the end
of a number and after the decimal point has the same significance as any
other digit; if this value was only known to two significant figures then it
would have been quoted as 79 m.

• 900 m: this is the really tricky one! It could be that the value is known
to three significant figures, that is, only the final zero is uncertain. But it
might be that the distance has been measured only to the nearest 100 m
(i.e. it lies between 850 m and 950 m). One way round this ambiguity
is to state clearly the number of figures that are significant; for example
to quote ‘900 m to one significant figure’. Alternatively, we can use sci-
entific notation to resolve the ambiguity. Thus 9.00 × 102 m, 9.0 × 102 m
and 9 × 102 m are all 900 m, but expressed to three significant figures, two
significant figures and one significant figure respectively.

Question 9.3

To how many significant figures are each of the following measurements
given:

(a) 1.240 mm; Answer

(b) 0.019 mm; Answer

(c) 10.009 5 mm; Answer

(d) 8.90 × 104 mm. Answer
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9.1 Significant figures in calculations

The results of measurements are often used in calculations, and we then need to
know how many figures to quote in the final answer. As a rule of thumb, when
multiplying and dividing numbers, the number of significant figures in the result
should be the same as in the measurement with the fewest significant figures. For
example, if the length of a flower bed is 4.5 m and its width is 1.09 m, then the
calculated area is 4.5 m×1.09 m = 4.905 m2. However, since the length of 4.5 m
is measured only to two significant figures, we are only justified in quoting the
area to two significant figures, so we would round the calculated value to 4.9 m2.

Question 9.4

Do the following calculations and express your answers to the appropriate
number of significant figures:

(a) 0.43 m ÷ 1.2 s Answer

(b) 2.373 m × 3.6 m Answer

(c) 6 342 kg ÷ 2.42 m3 Answer
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Reading data from tables 10
Use of water Volume/litres

Domestic – mains water supply
flushing lavatory 44
bath and shower 23
washing machine 16
dishwasher 1
outside use (garden, car washing) 4
miscellaneous (drinking, cooking, cleaning) 48

Non-domestic – mains water supply
commercial and industrial use 189

Non-domestic – rivers and underground supplies
agriculture 7
electricity generation 220
industry 52

Table 10.1: Estimates of daily uses of water per person in
the UK.

Tables provide a neat and concise way of dis-
playing information. Table 10.1 illustrates vari-
ous important features, common to all tables of
this type:

• a title;

• a heading at the top of each column;

• the ‘volume’ heading includes the units
(litres in this case), so the unit does not
have to be repeated after each number.

Note the way in which the volume heading and
its units have been quoted as ‘volume/litres’.

It is conventional always to use ‘quantity
divided by units’ (usually in the form
‘quantity/units’) in labelling the headings of
tables and the axes of graphs.
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When reading a value from the table, for example the estimated amount of water
used in washing machines, the units from the heading must be re-attached to the
appropriate number. In the case of the example, the units of litres must be given
alongside the number 16; 16 litres of water are used in washing machines per
person per day in the UK.

The way in which the table heading is given as ‘volume/litres’ is a reminder of
the fact that the value (16 litres) has been divided by litres. The litres then cancel
to give a pure number in the table:

volume/litres =
16 ���litres
���litres

= 16

Question 10.1

To practise reading the information presented in Table 10.1, answer the fol-
lowing questions:

(a) How much water does the average person in the UK use each
day in the home for flushing the lavatory?

Answer

(b) What does the number 7 in the third row from the bottom of
the table mean?

Answer
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Major planet Mass/1020 kg

Mercury 3 302
Venus 48 690
Earth 59 740
Mars 6 419
Jupiter 18 990 000
Saturn 5 685 000
Uranus 866 200
Neptune 1 028 000

Table 10.2: Masses of the major
planets in the Solar System.

Now look at Table 10.2. The ‘mass’ heading includes not just a unit but
a power of ten too. This has been done to avoid giving a power of ten
alongside each value and thus to make the table less cluttered; it also
makes it easier to compare the different masses. Not only has the mass
of each planet been divided by kg, it has also been divided by 1020, and
both the units and the power of ten need to be re-attached when data are
extracted from the table. Thus the mass of Mercury is 3 302 × 1020 kg,
which is 3.302 × 1023 kg in scientific notation (since the decimal point
has to be moved a further three places).

Question 10.2 Answer

Use Table 10.2 to find the mass of the planet Uranus.
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Representing data: pie charts, bar
charts and histograms 11
The well-known saying that a picture is worth a thousand words reflects the fact
that we can derive a lot of information from pictorial representations of a situation.
Sections 11 and 12 look at various methods used by scientists to represent data in
a pictorial way.

11.1 Pie charts

Figure 11.1a shows a circular pie. If we divide the pie into four equal portions, as
shown in Figure 11.1b, then each portion is 1

4 or 25% of the whole pie.

(a) (c)(b)

Figure 11.1: In a pie chart, the whole pie is divided into segments, where the size
of the segment reflects the proportion of the component it represents.
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Question
If we divide the pie into five equal portions, what percentage of the whole pie
would each portion represent?

Answer
Each portion would represent 1

5 × 100%, that is 20% of the whole pie.

Pie charts give a quick visual impression of the proportions that something is
divided into; remember that the whole pie represents 100%.
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We can present the data in Table 11.1 by
a pie chart, as shown in Figure 11.2.
Here, the sizes of the portions reflect the
percentage composition of the Earth’s
atmosphere at sea-level, based on the
numbers of particles of each gas. Thus
the whole pie (100%) represents the
atmosphere, the largest segment (77.6%)
represents the proportion of nitrogen, the
next largest segment (20.9%) represents
the proportion of oxygen, and so on.

Component Number of particles/% of total

nitrogen 77.6
oxygen 20.9
argon 0.93
water (average value) 0.5
carbon dioxide 3.6 × 10−2

Table 11.1: The gaseous composition of the Earth’s atmosphere
at sea-level.

nitrogen 77.6%

oxygen 20.9%
argon 0.93%

water 0.5%
carbon dioxide 0.036%

Figure 11.2: A pie chart showing the composition of the Earth’s
atmosphere. The sizes of the portions of pie are in proportion to
the numbers of particles of the different components of the atmo-
sphere.
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Note that pie charts can be drawn in a three-
dimensional style, as shown in Figure 11.3. The
two-dimensional representation in Figure 11.2
shows the proportions more accurately, though
the three-dimensional representation is frequently
used. In an accurate pie chart, the angle at the cen-
tre of the pie chart should correspond to the pro-
portion of the component in question. Angles are
measured in degrees (represented by the symbol ◦)
and there are 360◦ in a circle (see Figure 11.4). So,
in Figure 11.1c, where each of the segments repre-
sents 1

4 of the whole, the angle at the centre of each
segment is

1
4
× 360◦ = 90◦

Question 11.1 Answer
What angle would you need to use for a seg-
ment of a pie chart representing 10% of the
whole?

nitrogen 77.6%

oxygen 20.9%
argon 0.93%water 0.5%

carbon dioxide 0.036%

Figure 11.3: Pie charts are sometimes drawn in a
three-dimensional style

starting
position

direction of
rotation

45◦
90◦135◦

180◦

225◦

360◦

Figure 11.4: The angles encountered in turning
through a circle
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11.2 Bar charts
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Figure 11.5: Bar chart showing the number of
insect species supported by some tree species
in the UK

Bar charts are used to summarise data in discrete categories,
such as human eye colour, blood group, species of plant etc.
The categories are listed along a reference line, usually a
horizontal one (the so-called horizontal axis). The number
or percentage of things or events falling into each category
is represented by a bar, and the scale for these bars, most
commonly expressed as a number or a percentage, is usually
given on the vertical axis. Figure 11.5 shows a bar chart
depicting the number of insect species supported by each of
seven different types of tree in the UK. Notice that the bars
on the bar chart do not touch; this is because each bar refers
to a separate distinct category.

Question
Roughly how many species of insect are associated with
hawthorn?

Answer
Reading the value on the vertical axis, the top of the
‘hawthorn’ bar is just less than halfway between 200 and
250, so we can estimate that about 220 species of insect
are associated with hawthorn.
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11.3 Histograms
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Figure 11.6: Histogram representing the result
of measuring the heights of 100 of the same va-
riety of iris as part of horticultural field trials.
The horizontal axis is divided into intervals to
represent different height groups.

A histogram is similar to a bar chart in that numbers or per-
centages are again commonly plotted vertically, but on a
histogram the horizontal axis is used to represent a con-
tinuously variable quantity such as height, mass or time.
The purpose of a histogram is to show how the data are
distributed into groups across a continuous range. Figure
11.6 shows a histogram which presents the results of mea-
surements taken of the height of 100 irises. In principle, a
plant selected at random could be of any height. Of those
measured, a few specimens are particularly tall and a few
are particularly short, but the majority are of intermediate
height; this is typical of natural variation in populations.
Note that on a histogram (as compared with a bar chart) the
columns touch, because the entire range of values is repre-
sented. For the same reason, the height interval of 110 cm
to 115 cm is included, even though there are no irises of
this height. Finally, note that the height intervals are of equal size. This is com-
mon practice, although there are ways of constructing histograms using unequal
intervals.

Question 11.2 Answer

Approximately how many of the irises in the field trials were less than 85 cm
tall?
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Representing data: graphs 12
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title tells you at a glance what the graph is about

origin is the point
where both scales are
zero

plotted point indicates
height at a particular age
(110 cm at 10 years)

label tells you
height is being
plotted along
vertical axis

“/” means heights are
divided by the unit cm to
give numbers on scale

Figure 12.1: Height of Marie, from birth to 18 years old.

Graphs are used to illustrate
the relationship between two
quantities; for example Fig-
ure 12.1 shows the way in
which the height of a girl
changes as her age increases.
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12.1 Reading information from a graph

There are 10 of
these divisions
between 20 and
40

18
20
22
24
26
28
30
32
34
36
38
40
42

A

B

Figure 12.2: Enlarged part of
the vertical scale of Figure
12.1.

Figure 12.1 illustrates some very important points to be borne in mind when
reading data from any graph of this sort.

Notice that the vertical axis has been labelled ‘height/cm’. The label includes
the unit, in the same way as in the headings of tables. On some graphs the
label includes a power of ten too – take care to look out for this.

Returning to Figure 12.1, the combination of the label and the scale on the
vertical axis tells us that the numbers correspond to height in centimetres, that
is, 0 cm, 20 cm, 40 cm, etc. So as we move vertically upwards on the graph,
the girl’s height increases by 20 cm for each 1 cm on the graph paper. Look
at Figure 12.2, which shows an enlarged version of the small section of the
vertical scale between 20 and 40 cm on Figure 12.1. Because the horizontal
lines on the graph in Figure 12.2 are equally spaced, we can work out what
values of height correspond to each of the lines. The 20 cm difference be-
tween 20 cm and 40 cm has been divided into 10 small equal divisions, so
each small division represents 20 cm

10 = 2 cm. So the horizontal lines on the
enlarged graph have been marked 22, 24, 26, and so on. The point on the axis
indicated by arrow ‘A’ corresponds to 28 cm, and the point indicated by arrow
‘B’ corresponds to 36 cm. A point that is halfway between the lines marked
34 and 36 corresponds to 35 cm.
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The horizontal axis in Figure 12.1 has a scale
numbered 0, 2, 4, 6, . . . 18; these numbers
correspond to the age in years. The succes-
sive numbers are separated by 1 cm, so this
is also a uniform scale. For every 1 cm that
we move from left to right on the graph, the
age of the girl increases by 2 years.
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Height of Marie, from birth to 18 years old

Question
How much does the age of the girl increase for each small division?

Answer
Since 10 small divisions represent 2 years, one small division (1 mm)

represents
2 years

10
= 0.2 years. This is about 10 weeks.
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The combination of title, axes, axis labels, scales and graph paper give a frame-
work for displaying the results of measurements, and these are represented by the
circled points on the graph in Figure 12.1. The position of a point on the graph
represents a pair of related measurements; the horizontal position of a point rep-
resents the girl’s age, and the vertical position corresponds to her height at that
age.

To work out the height for a particular point, you can draw a horizontal line from
the point to the vertical axis, and read off the appropriate number from the scale.

Question
What is the height for the third point from the left on the graph in Figure
12.1?

Answer
70 cm; you can find this value by drawing a line horizontally from the
third point to the vertical axis.
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The corresponding age is read by drawing a line vertically downwards from
the point to the horizontal axis.

Question
What is the age for the third point from the left in Figure 12.1?

Answer
2 years; you can find this value by drawing a line vertically downwards
from the third point to the horizontal axis.
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An alternative to drawing lines on the graph is to lay a ruler on the graph, hori-
zontally or vertically, to help your eye follow a line from a point on the graph to
the axis.

The 11 circled points on the graph represent measurements of the girl’s height at
different ages. The points have been joined together with a smooth curve to rep-
resent the overall trend of the measurements, and this gives an immediate visual
picture of how the height has changed.
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Question
What is the trend of the girl’s height
with increasing age?
Answer
The girl’s height increased rapidly in
the first couple of years, and her
growth then slowed down – the curve
becomes flatter. There was another
growth spurt corresponding to the
onset of puberty, between 10 and 14
years, and her height then remained
almost constant at about 165 cm.
(This last height is 21

2 divisions above
160 cm, and since each division is
2 cm, the height must be
21

2 × 2 cm = 5 cm above 160 cm.)
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Height of Marie, from birth to 18 years old
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The smooth curve allows us to estimate
the height of the girl at ages between
those at which the actual measurements
were made. So to estimate her height
at 7 years, we find 7 years on the age
axis, follow a vertical line upwards from
here to the curve, and then follow a line
from this point on the curve to the ver-
tical axis, and read the appropriate value
for the height from the scale on the axis;
it’s about 97 cm. This process of deter-
mining intermediate values between the
plotted points is known as interpolation.

Question 12.1 Answer

Use the graph to estimate the girl’s
height at 11 years.
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Question 12.2

To practise reading graphs, study Figure 12.3 and an-
swer the following questions.

(a) What is the subject of this graph? Answer

(b) What quantity is plotted on the
vertical axis, and in what unit is it
measured?

Answer

(c) What is plotted on the horizontal
axis, and in what unit is it
measured?

Answer

(d) What was the water flow of the
stream at 12.00 hours?

Answer

(e) What was the maximum flow of
the stream and at what time did it
occur?

Answer

(f) Describe in words the way that the
water flow changed over the period
plotted on the graph.

Answer
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Figure 12.3: The volume of water in a stream
flowing past a fixed point per second, dur-
ing a flood after heavy rainfall. This is the
type of graph produced by a continuously
recording instrument so there are no individ-
ual plotted points.
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12.2 The gradient of a graph
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y

0

1

2

3

Figure 12.4: A graph of three lines
with different gradients.

We often want to know how one quantity varies with respect to another.
We may be interested in the actual value of one quantity for a particular
value of the other quantity (as in Section 12.1), but it is more often the
rate at which one quantity varies with respect to another that is of more
importance. The slope or gradient of a graph gives us a method of find-
ing rate of change. We have already discussed the fact that Figure 12.1
shows us that the girl’s height increased rapidly in the first couple of
years and then her growth slowed down. We know this because the gra-
dient (slope) of the graph is initially steep but then becomes shallower.

In this booklet, there is only space to discuss how to find the gradient
of a simple straight-line graph, such as the ones shown in Figure 12.4.
A straight-line graph is one in which quantity plotted on the vertical
axis varies at a steady rate with respect to the quantity plotted on the
horizontal axis. In other words, the gradient of the line is constant.

Question
Which of the lines in Figure 12.4 has the largest gradient and which has the
smallest gradient?

Answer
Line 3 has the largest gradient – this is the steepest slope. Line 1 has the
smallest gradient – it has the smallest change in the vertical direction for any
particular change in the horizontal direction.
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Figure 12.5: Graph showing how long it takes for seismic
waves from an earthquake to reach three detectors at differ-
ent distances from the epicentre. (Note that the epicentre is
the point on the Earth’s surface vertically above the centre, or
focus, of an earthquake.)

The gradient of a straight line is defined as:

gradient =
change in vertical value

change in horizontal value

This is sometimes stated as:

gradient =
rise
run

To work out the gradient of a straight line
on a graph, we simply need to take any two
points on the line (to increase the precision
of the calculation, the points should be quite
well separated) and find the change in ver-
tical value (the rise) corresponding to a par-
ticular change in horizontal value (the run).
As an example, let’s find the gradient of the
graph shown in Figure 12.5.
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Figure 12.6 shows that as the horizontal value increases from 4 s to 32 s, the
vertical value increases from 10 km to 170 km. Thus the run is (32 − 4) s = 28 s
and the rise is (170 − 10) km = 160 km and the gradient is given by:

gradient =
rise
run

=
160 km

28 s
= 5.7 km s−1
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Figure 12.6: Finding the gradient of the graph in Figure 12.5.

The gradient of a graph can have units, just like any other calculated quantity.
In the example here, we have divided kilometres by seconds so the unit of the
gradient is km s−1, which is a unit of speed. The gradient gives a measure of the
speed at which the earthquake waves travel through the Earth from the epicentre
to the detectors.
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Note also that the rules for significant figures in calculations, introduced in Sec-
tion 9.1, apply here too. In the example above, the run is given to two significant
figures, so the answer is correctly given to two significant figures too.

Question 12.3 Answer

A large ornamental pool with straight sides
and a flat bottom is filled with water. A
meter registers the volume of water pumped
into the pool. As the pool fills, the depth
of water is measured. Figure 12.7 shows a
graph in which the depth of water is plotted
against the volume of water added. Calcu-
late the gradient of this graph.
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Figure 12.7: Graph for use with Question 12.3.
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12.3 Plotting a graph

Elapsed time/min Volume/ml

0 150
3 150
6 155
9 170

12 200
15 215
18 245
21 275
24 305

Table 12.1: Volume of yeast mix-
ture after various times with water
at 25 ◦C.

This discussion of how to plot a graph is based on the data shown in
Table 12.1, which comes from an experiment in which the volume of
a mixture of yeast, sugar and water at 25 ◦C was observed to increase
with time. When plotting a graph of these results, or any similar data,
you should work through the following stages.

Stage 1 Choose your axes

The first thing to decide is which of the two sets of readings (elapsed
time and volume in this case) should go on which axis. In this exper-
iment, the time intervals at which readings were to be taken had been
decided in advance, before the investigation began, i.e. they were fixed.
Such fixed information – termed the independent variable – is conven-
tionally plotted on the horizontal axis, frequently referred to as the ‘x-
axis’. The volume readings depend on the time at which the reading was
taken and, consequently, these are termed the dependent variable. Such quanti-
ties, which depend on other variables, are plotted on the vertical axis, frequently
referred to as the ‘y-axis’.

Stage 2 Choose your scale

Having decided that elapsed time should go on the horizontal axis and volume
should go on the vertical axis, next you need to decide what scale to use on each
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axis. You should aim to use as much of the graph paper as possible (so that
the graph is as large as possible, which makes it easier to read the values) while
avoiding scales that are awkward to read and thus potentially confusing.

Question
Look at the data in Table 12.1. What ranges of values need to be represented
horizontally and vertically?

Answer
The horizontal axis needs to include times from 0 to 24 minutes. The vertical
axis needs to include volumes from 0 to 305 ml (it would also be acceptable
to plot a graph just showing volumes from 150 to 305 ml).

Assume your graph paper covers 13 cm in the direction you have chosen for the
horizontal axis. You could use each 1 cm to represent 2 minutes, as shown in
Figure 12.8.

0 2 4 6 8 10 12 14 16 18 20 22 24

elapsed time/min

Figure 12.8: Choosing the scale for the horizontal (time) axis.
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Question
Assume your graph paper covers 17 cm in the direction you have
chosen for the vertical axis. What scale would be appropriate to
include volumes of 0 to 305 ml?

Answer
One possibility is to use each 1 cm on the vertical axis to represent
20 ml, as shown in Figure 12.9, so each small 1 mm square
represents 2 ml.

In this example, both scales start from zero (the origin of the graph) but
this is not essential – the scale for the vertical axis could equally well
start at, say, 140 ml, which would make better use of the graph paper.

You should aim to use as much of the graph paper as possible when
plotting a graph. However, sometimes it is not possible to do this with-
out using a different scale that is difficult to use. For example, the value
for a volume of 215 ml at 15 minutes might fall between the labelled
divisions in an awkward way, so it is best to aim for straightforward
scales where the plot uses at least half the graph paper. In Figures 12.8
and 12.9, 1 cm represents 2 minutes on the horizontal scale and 1 cm
represents 20 ml on the vertical scale, respectively. In general terms,
multiples of 2, 5 and 10 are usually satisfactory; scales involving multi-
ples of 3 are to be avoided!
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Figure 12.9: Choosing the scale
for the vertical (volume) axis.
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One final point relates to the orientation of the graph paper. Sometimes simply
rotating the graph paper from portrait to landscape can make it much easier to find
suitable scales, as shown in Figure 12.10.

portrait

landscape

Figure 12.10: Changing the orientation of the graph paper from portrait to land-
scape can help in choosing appropriate scales for the axes.

114



Stage 3 Label your graph

For a graph to convey meaning to other people, it must be completely labelled.
Each axis should be labelled with the quantity it represents (elapsed time or vol-
ume in this case), followed by a forward slash (/), followed by the units (min
or ml). So the vertical axis of the graph should be labelled ‘volume/ml’ and the
horizontal axis should be labelled ‘elapsed time/min’.

In addition to having labelled axes, the graph itself should have a title. This
should include information about the content of the graph: for example, it needs
to be clear that the graph illustrates the variation of the volume of the yeast mix-
ture with elapsed time. The title should also include some information about the
temperature.

Question
What would be a suitable title for the graph being plotted on this occasion?

Answer
Here is one suggestion: ‘Graph showing the variation of the volume of yeast
mixture with elapsed time, at 25 ◦C’.
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Stage 4 Plot the points
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Figure 12.11: Plotting a point on a graph.

You are now ready to plot the points. Follow a procedure similar
to the one you used to read the value from a graph in Section 12.1.
So, to plot the point for which the elapsed time is 6 minutes, you
should draw a real or imaginary line up from the horizontal axis
for an elapsed time of 6 minutes (Figure 12.11). Similarly, since
the volume of mixture was measured as 155 ml at this time, you
should draw a real or imaginary line across from the vertical axis
for a volume of 155 ml. Your point should be at exactly the place
where the two lines meet.
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Several different conventions are used to indicate points on a graph, ×, + and �
being the best (Figure 12.12), but it does not matter which one you use. These
marks make it clear exactly where the centre of the point is: for × and + it is where
the two lines cross, and for � it is at the dot in the centre of the circle. The circle
drawn around the dot simply makes the point clearer – it can be very difficult to
see just a dot when you come to draw the curve. It also makes it difficult for other
people to see where you have positioned the point.

It is very easy to make a mistake when plotting points and drawing a curve through
the points, so you are advised to use a pencil rather than a pen for these tasks – and
to have an eraser ready. There are computer programs which will plot points for
you and draw the curve but, unless there is a reason why you cannot plot graphs
by hand, you should make sure that you know how to do this.

Figure 12.12: Different marks for indicating the points on a graph.
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Stage 5 Draw a curve through the points

When you have plotted all of the points on the graph, all that remains to be done is to draw a
curve that best represents the data. Before doing this, hold the graph paper at arm’s length and
look at the points. Most of the graphs that you draw will represent a general trend, for example
the way in which a child’s height increases with age, or a yeast mixture increases in volume as
time passes. These are both continuous processes: you would not expect the child’s height to
increase one month and then decrease the following month. However, with real experimental
data, uncertainties in measurements sometimes lead to readings which vary in a rather erratic
way (Figure 12.13). Provided you are sure that your graph represents a general trend (which
is usually the case), you need to draw the smooth curve which best represents the data, not a
series of short lines joining the individual points.

If the points appear to represent a uniform variation, the ‘curve’ which best represents them
will be a straight line, as in Figure 12.13c. This is known as the best-fit line.

(a) (b) (c)

Figure 12.13: Graphs usually represent a general trend: (a) a series of points on a
graph; (b) the points should not be joined by a series of short lines; (c) instead, a
best-fit line should be drawn to represent all the data.
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If common sense tells you that the line should go through the origin, the line can
be drawn in this way. (For example, if it represents the variation of mass with
volume for a series of aluminium blocks, when there is no volume it is reasonable
to assume that there is no mass either.) Apart from this, the line should be drawn
so that there is approximately the same number of points above the line as below
it, at approximately similar distances from the line. Note that, generally, it is not
necessary for any of the points to lie right on the best-fit line.

If it seems that the data cannot be represented by a straight line, a smooth best-
fit curve should be drawn. This is a more difficult skill, but the same general
principles can be applied, leading to a curve which is the best representation of
the data as a whole.

Many people find it easiest to draw a smooth curve if they place the graph so that
their hand is inside the curve (Figure 12.14).

Figure 12.14: Drawing a smooth curved graph by placing your hand inside the
curve.
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A graph to show the variation of the volume of
yeast mixture with elapsed time, at 25 ûC.

Figure 12.15: The completed graph.

The completed graph for the data in Table 12.1 is
shown in Figure 12.15, with a smooth curve drawn
to represent the points. Note the point with an
elapsed time of 12 minutes and a volume of 200 ml.
This point does not seem to follow the general trend;
it is probably the result of a measurement error dur-
ing the experiment. It is best to ignore such points
when drawing best-fit curves.
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Equations and Symbols 13
The word ‘equation’ is used for an expression containing an equals sign. The
quantities under consideration may be described in words, for example

average speed =
distance travelled

time taken

in which case the equation is known as a ‘word equation’, or represented by sym-
bols, for example

v =
d
t

but the important thing to remember is that what is written on the left-hand side
of the ‘=’ sign must always be equal to what is written on the right-hand side.
Thus, as explained in Section 14.5, you should never use ‘=’ as a shorthand for
anything other than ‘equals’.
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You know (from Section 6.1) that, for squares and rectangles, the area is found by
multiplying the length by the width and that, for rectangular block-like structures,
the volume is found by multiplying its length by its width by its height.

Question
Write word equations (i.e. expressions involving an equals sign like that given
above for average speed) for the area of a rectangle and the volume of a rect-
angular block.

Answer
Area = length times width,
i.e. area = length × width (or equivalently, area = width × length).

Volume = length times width times height,
i.e. volume = length × width × height

Writing out all of these words is rather tiresome. However, equations can be
expressed far more compactly if each word is replaced with a single letter, so the
equation for the volume of a rectangular block might become:

V = l × w × h

where V represents volume, l represents length, w represents width and h repre-
sents height.
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Question

Rewrite the word equation density =
mass

volume
, using letters instead of words.

Answer
The choice of letters was left up to you, so there is no single right answer. If
you chose the symbol d to represent density, m to represent mass and v to rep-
resent volume, your equation will be d =

m
v

. (Note that the letter representing
a quantity such as mass is usually written in italics (m in this case). This is
particularly important where a symbol is also used as an abbreviation for a
unit, for example, m for metre.)

It is reasonable to use the first letter of each quantity (e.g. m for mass). It makes
the choice of letter more memorable and this is a perfectly acceptable answer.
However, d for density might be confused with d for distance and v for volume
might be confused with v for velocity. So, scientists try to reserve one letter for
each commonly used quantity. Unfortunately, there aren’t enough letters in the
alphabet, so it is conventional to use the Greek letter ρ (pronounced ‘rho’) to
represent density and a capital V to represent volume, so the equation for density
becomes:

ρ =
m
V

(13.1)
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Similarly, speed is conventionally represented by v (for ‘velocity’), so using d for
distance travelled and t for time taken, the equation for speed becomes:

v =
d
t

(13.2)

There is one more convention that you need to know about:

When using symbols instead of words or numbers, it is conventional to omit
the multiplication sign, ‘×’.

So, the equation for the volume of a rectangular block becomes:

V = lwh (13.3)

where V represents volume, l represents length, w represents width and h repre-
sents height.

Equations 13.1, 13.2 and 13.3 will enable you to calculate density, average speed
and the volume of a rectangular block.
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Question 13.1

(a) An ice cube can be considered to be a rectangular block of ice
with a length of 3 cm, a width of 2 cm and a height of 15 mm.
What is the volume of such an ice cube?

Answer

(b) The largest recorded iceberg in the Northern Hemisphere was
approximately rectangular in shape with a length of 13 km, a
width of 6 km and an average height of 125 m. What is the
volume of the iceberg?

Answer

Now look at one final equation, which gives the volume, V , of a sphere of radius
r:

V =
4
3
πr3 (13.4)

where π is a constant (π is the Greek letter pi, pronounced ‘pie’). The constant π
has a value of 3.141 592 654 (to 9 decimal places) but you don’t need to remember
this as it is stored in your calculator – look for the π button now! You can use
Equation 13.4 to find the volume of any sphere anywhere in the Universe.

Equation 13.4 is more complicated than any of the other equations we have con-
sidered, so it needs a closer look. First, the multiplication signs have been omitted,
i.e. the equation could be written as:

V =
4
3
× π × r3
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Also, note that the radius term, r, is cubed: the powers notation, already intro-
duced for numbers and units, can be used for symbols too.

r3 = r × r × r

However, note that only the r is cubed, not the 4
3 or the π, so when you substitute

values into Equation 13.4, you need to take care to calculate:

V =
4
3
× π × r × r × r

Raindrops are approximately spherical and they have a diameter of about 2 mm,
i.e. a radius of about 1 mm. Using Equation 13.4, find the volume, in metre3, of
a typical raindrop:

r = 1 mm = 1 × 10−3 m

so

V =
4
3
πr3

=
4
3
× π × (1 × 10−3 m)3

= 4.188 790 205 × 10−9 m3

This is about 4 × 10−9 m3. Check that you can obtain this value for yourself,
taking special care to cube both 1 × 10−3 and its units (m).
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Question
The Earth can be thought of as a sphere with a radius of 6.4 × 106 m. Use
Equation 13.4 to find a value for the volume of the Earth.

Answer
Using Equation 13.4:

V =
4
3
πr3

=
4
3
× π × (6.4 × 106 m)3

= 1.098 066 219 × 1021 m3

So, the Earth has a volume of about 1.1 × 1021 m3.

Question 13.2 Answer

Using Equation 13.4, what is the volume of a hailstone with a diameter of
1 cm? Write out your calculation in the style recommended in Section 14.5
showing each step of the calculation, and give your answer to one significant
figure.
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Tips for tackling mathematical
questions 14
Many students struggle to answer mathematical questions in science modules. The follow-
ing tips may help:

14.1 Getting started

1. Read the question carefully and make sure that you understand what you are being
asked to do. There are a number of keywords (‘process words’) you should look
out for, since they give clues as to what is expected. Some commonly encountered
process words are explained in Table 14.1.

2. Write down the values and equations that have been given in the question, and also
write down what it is that you are trying to find.

3. It can be helpful to draw a diagram of the situation.

4. Think carefully about how you are going to get from what you have been told in the
question to what you are trying to find. What other equations etc. might be useful?
(Write them down too). Try to devise a strategy for answering the question.
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5. Have the courage to start to answer a question, even if you can’t see how to get to the
end. The way forward may become clear as you work. Even if you have to give up
part-way through, you may get some marks for what you have written. Remember
that in a typical science question involving a calculation, most of the marks are for
the working not the final answer.

Process word What you are required to do

evaluate Work out the value of an expression.

calculate Work out the value of a quantity from formulae or other information.
You will be expected to give the correct units of the quantity you
have calculated, and to state your answer to an appropriate number
of significant figures.

simplify Reduce an equation or expression to its simplest form.

plot Draw a graph. You will be expected to choose appropriate scales for
the axes, label the axes correctly (with units if appropriate) and to
show individual data points. You may also be expected to draw a
line of best fit to the data.

sketch (a graph) Draw the general shape of a graph. You will be expected to label
the axes, but not indicate numerical values on them (although it is
usual to indicate the origin). You will not be expected to put any
data points on the sketch, but merely to indicate its shape.

Table 14.1: Some common process words and their meanings.
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14.2 Doing the calculation

1. Write down your working carefully even if you intend to write it out again. Use full-
sized pieces of paper, not scraps; this makes your working much easier to follow and
you are less likely to make mistakes.

2. When you substitute numerical values, take care with units, scientific notation and
significant figures.

14.3 Taking care with units

1. Make sure that the values you have been given are in units that are consistent with
each other. For example, it doesn’t make sense to multiply one length given in mm
by another length given in cm. It is easier to convert all values to the same unit
(frequently the SI base unit) before doing a calculation.

2. Each line of your calculation should include units as well as numbers.

3. The units of your answer should be consistent with the units attached to the values
you are using in the calculation. So, if you are multiplying three lengths, measured
in metres, the units of the answer will be m3; if you are dividing a distance in m by a
time in s, the units of the answer will be m s−1
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14.4 Does your answer make sense?

1. Is your answer about the size you expected? If you were finding the volume of
a cube with sides 1.57 m long, you would expect the answer to be between 1 m3

(1 m × 1 m × 1 m) and 8 m3 (2 m × 2 m × 2 m). If your answer was 3870 m3, you
would know that you had made a mistake.

2. If you followed the advice in point 3 of Section 14.3 ‘Taking care with units’, the
units of your answer should be consistent with any equation that you have used. If
you were trying to find a speed (correct SI units m s−1) and your answer had units of
m3, you would know that something had gone wrong.

3. These checks won’t guarantee that your answer is correct, but they will frequently
highlight when mistakes have been made.

14.5 Writing maths

1. Always write down your working as well as your final answer. If you need to send
your answer to your tutor, it will help them to see what you did right and (if you
made a mistake) where you went wrong. Even if no one else looks at your working,
writing it down will make it clearer to you if you need to refer back to the question
later. Also, if your answer is written down in a methodical way you are less likely to
make a mistake and more likely to get the correct answer.

2. It is perfectly acceptable to write words of explanation in your answer – it doesn’t all
have to be symbols and numbers!
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3. Remember that the symbol ‘=’ means ‘equals’ and should never be used to mean
‘thus’ or ‘therefore’. The symbol ‘∴’ can be used to mean ‘therefore’, or just write
the word ‘therefore’ or ‘so’ in your answer. It can make a calculation clearer if you
align the ‘=’ symbols vertically, to indicate that the quantity on the left-hand side is
equal to or approximately equal to each quantity on the right-hand side. Figure 14.1
shows some examples of good and bad practice in the use of equals signs.

words of
explanation

can be
helpful

the working is
muddled and

difficult
to follow

 l = 3 m

w = 2 m

h = 1 m

so V = lwh

= 3 m × 2 m × 1 m

= 6 m3

l = 3, w = 2, h = 1 = V= lwh

  = 3 × 2 × 1 = 6 m3

these = signs are
aligned vertically,
indicating that all
the expressions on
the right-hand side

are equal to V.

this = sign has
been used to mean

ÔthereforeÕ. The
expressions on the
left-hand side are
not equal to the

expressions on the
right-hand side.

= signs are
only used to
mean equals!

(a) (b)

Figure 14.1: Using equals signs in calculations: (a) example of good practice; (b) example
of bad practice.
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Using your scientific calculator 15
To give you a further indication of the different ways in which different calculators
operate, the following list (which is not intended to be exhaustive) explains how
four specific calculators can be used for several specific calculations.

• Calculator 1 The Casio fx-991 (an inexpensive modern scientific calcula-
tor);

• Calculator 2 The Texas Instruments TI-30XA (a simple scientific calcula-
tor);

• Calculator 3 The Texas Instruments TI-83 (a graphics calculator).

• Calculator 4 The Windows Calculator (likely to be installed on your com-
puter already, and available under ‘All programs’ then ‘Accessories’). Note
that you should set the calculator to operate in scientific mode by selecting
‘View’ then ‘Scientific’.
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Simple calculations (Section 1)

To find 3 + 2 × 4:

On Calculator 1 you should press
‘3’ then ‘+’ then ‘2’ then ‘×’ then ‘4’ then ‘=’;

On Calculator 2 you should press
‘3’ then ‘+’ then ‘2’ then ‘×’ then ‘4’ then ‘=’;

On Calculator 3 you should press
‘3’ then ‘+’ then ‘2’ then ‘×’ then ‘4’ then ‘ENTER’;

On Calculator 4 you should press
‘3’ then ‘+’ then ‘2’ then ‘∗’ then ‘4’ then ‘=’.

The answer, on each occasion, should be given as 11. Calculators 1–3 ‘know’
the rule that multiplications should be done before additions, as does Calculator
4 provided it is set to operate in scientific mode.
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Calculations with brackets (Section 1.3)

To find (3 + 2) × 4:

On Calculator 1 you should press
‘(’ then ‘3’ then ‘+’ then ‘2’ then ‘)’ then ‘×’ then ‘4’ then ‘=’;

On Calculator 2 you should press
‘(’ then ‘3’ then ‘+’ then ‘2’ then ‘)’then ‘×’ then ‘4’ then ‘=’;

On Calculator 3 you should press
‘(’ then ‘3’ then ‘+’ then ‘2’ then ‘)’ then ‘×’ then ‘4’ then ‘ENTER’;

On Calculator 4 you should press
‘(’ then ‘3’ then ‘+’ then ‘2’ then ‘)’ then ‘∗’ then ‘4’ then ‘=’.

The answer, on each occasion, is given as 20.
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Raising a number to a power (Section 1.2)

To find 26:

On Calculator 1 you should press
‘2’ then ‘x�’ then ‘6’ then ‘=’;

On Calculator 2 you should press
‘2’ then ‘yx’ then ‘6’ then ‘=’;

On Calculator 3 you should press
‘2’ then ‘ˆ’ then ‘6’ then ‘ENTER’;

On Calculator 4 you should press
‘2’ then ‘xˆy’ then ‘6’ then ‘=’.

The answer, on each occasion, is given as 64.
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Inputting negative numbers (Section 2)

To find 117 − (−38) + (−286):

On Calculator 1 you should press
‘117’ then ‘−’ then ‘(−)’ ‘38’ then ‘+’ then ‘(−)’ then ‘286’ then ‘=’;

On Calculator 2 you should press
‘117’ then ‘−’ then ‘38’ then ‘ + −’ then ‘+’ then ‘286’ then ‘ + −’ then ‘=’;

On Calculator 3 you should press
‘117’ then ‘−’ then ‘(−)’ ‘38’ then ‘+’ then ‘(−)’ then ‘286’ then ‘ENTER’;

On Calculator 4 you should press
‘117’ then ‘−’ then ‘38’ then ‘+/-’ then ‘+’ then ‘286’ then ‘+/-’ then ‘=’;

The answer, on each occasion, is given as −131.
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Expressing answers in scientific notation (Section 7.3)

The answer to 2500 × 8000 is 20 000 000. To express this number in scientific
notation (2 × 107) you should do the following:

On Calculator 1 you should press ‘Set up’ then ‘7’ (for scientific notation) then a
number between 0 and 9 for the number of digits you would like displayed. If you
press ’3’ the answer then appears as 2.00 × 107. To return to non-scientific nota-
tion press ‘Set up’ then ‘8’ (for normal) then ‘1’ (to select the range of numbers
you would like to be expressed in scientific notation even when everyday sized
numbers are given in decimal notation).

On Calculator 2 you should press ‘SCI’. The answer then appears as 2.07 (meaning
2 × 107). To return to non-scientific notation press ‘FLO’.

On Calculator 3 you should press ‘MODE’ then ‘I’ to select ‘Sci’ then ‘ENTER’
then ‘QUIT’. The answer then appears as 2E7 (meaning 2 × 107). To return to
non-scientific notation press ‘MODE’ then ‘J’ to select ‘Normal’ then ‘ENTER’
then ‘QUIT’.

On Calculator 4 you should press ‘F-E’. The answer then appears as 2.e+7 (mean-
ing 2 × 107). To return to non-scientific notation press ‘F-E’ again.
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Calculating in scientific notation (Section 7.3)

To find
1 × 108

2 × 10−17

On Calculator 1 you should press
‘1’ then ‘×10x’ then ‘8’ then ‘÷’ then ‘2’ then ‘×10x’ then ‘(−)’ then ‘17’ then ‘=’.

The answer is given as 5 × 1024.

On Calculator 2 you should press
‘1’ then ‘EE’ then ‘8’ then ‘÷’ then ‘2’ then ‘EE’ then ‘17’ then ‘ + −’ then ‘=’.

The answer is given as 524 (meaning 5 × 1024).

On Calculator 3 you should press
‘1’ then ‘EE’ then ‘8’ then ‘÷’ then ‘2’ then ‘EE’ then ‘(−)’ then ‘17’ then ‘ENTER’.

The answer is given as 5E24 (meaning 5 × 1024).

On Calculator 4 you should press
‘1’ then ‘Exp’ then ‘8’ then ‘/’ then ‘2’ then ‘Exp’ then ‘17’ then ‘+/-’ then ‘=’;

The answer is given as 5.e+24 (meaning 5 × 1024).
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Answers

The following pages contain the answers to questions in the main text, which will
normally be accessed using links from the main text.
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Question 1.1 (a)

283 + 729 = 1012

{Click on the question number to return to the main text.}
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Question 1.1 (b)

38 + 92 − 61 = 69

{Note that you do not have to press ‘=’ after the first addition (38 + 92), though
if you do the final answer should be the same; check this for yourself.}
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Question 1.1 (c)

761 × 13 = 9 893
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Question 1.1 (d)

94 ÷ 47 = 2
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Question 1.1 (e)

24 × 32 × 8 = 6 144
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Question 1.1 (f)

24 × 32 ÷ 8 = 96
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Question 1.2 (a)

The multiplication should be done before the addition, so

3 × 4 + 2 = 12 + 2 = 14
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Question 1.2 (b)

The multiplication should be done before the addition, so

2 + 4 × 3 = 2 + 12 = 14

{Note that the answers to (a) and (b) are the same. This is because addition and
multiplication are individually commutative, i.e. 3 × 4 is the same as 4 × 3 and
12 + 2 is the same as 2 + 12. Remember though that the multiplication must be
done before the addition.}
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Question 1.2 (c)

The division should be done before the addition, so

35 ÷ 5 + 2 = 7 + 2 = 9

149



Question 1.2 (d)

The division and multiplication should be done before the subtraction, so

4 × 2 − 21 ÷ 7 = 8 − 3 = 5
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Question 1.3 (a)

33 = 3 × 3 × 3 = 27
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Question 1.3 (b)

The 52 should be evaluated first, and 52 = 5 × 5 = 25.

Then 3 × 52 = 3 × 25 = 75
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Question 1.3 (c)

The 23 and 32 should be evaluated first.

23 = 2 × 2 × 2 = 8 and 32 = 3 × 3 = 9.

Then 23 × 32 = 8 × 9 = 72
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Question 1.3 (d)

The 32 and 42 should be evaluated first.

32 = 3 × 3 = 9 and 42 = 4 × 4 = 16.

Then 32 + 42 = 9 + 16 = 25
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Question 1.4 (a)

Working from left to right gives

26 − 12 + 4 = 14 + 4 = 18
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Question 1.4 (b)

The multiplication should be done before the addition, so

16 + 12 × 2 = 16 + 24 = 40
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Question 1.4 (c)

The bracket should be evaluated first, so

(16 + 12) × 2 = 28 × 2 = 56
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Question 1.4 (d)

The multiplication should be done before the subtraction, so

35 − 7 × 2 = 35 − 14 = 21
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Question 1.4 (e)

The bracket should be evaluated first, so

(35 − 7) × 2 = 28 × 2 = 56
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Question 1.4 (f)

Working from left to right gives

180 ÷ 10 × 3 = 18 × 3 = 54
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Question 1.4 (g)

The bracket should be evaluated first, so

180 ÷ (10 × 3) = 180 ÷ 30 = 6
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Question 1.4 (h)

The bracket should be evaluated first, so

(4 × 3)2 = 122 = 144
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Question 1.4 (i)

The term including an exponent, 32, should be evaluated first, so

4 × 32 = 4 × 9 = 36
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Question 1.4 (j)

The innermost brackets should be evaluated first, so

{(10 + 5) × (3 + 1)} + 4 = {15 × 4} + 4 = 60 + 4 = 64
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Question 1.5 (a)
18 + 6

3
=

24
3

= 8
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Question 1.5 (b)
18
3

+ 6 = 6 + 6 = 12
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Question 1.5 (c)

20/4 + 6 = 5 + 6 = 11
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Question 1.5 (d)

20/(4 + 6) = 20/10 = 2
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Question 1.5 (e)
√

16 + 9 =
√

25 = 5
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Question 1.5 (f)
√

16 +
√

9 = 4 + 3 = 7
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Question 1.5 (g)

3(8 − 3) means 3 × (8 − 3), so 3(8 − 3) = 3 × 5 = 15
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Question 1.5 (h)

(8 − 4)(3 + 5) means (8 − 4) × (3 + 5), so (8 − 4)(3 + 5) = 4 × 8 = 32
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Question 2.1 (a)

65 ◦C
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Question 2.1 (b)

57 ◦C
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Question 2.1 (c)

−57 ◦C
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Question 2.1 (d)

65 ◦C
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Question 2.2

−210 ◦C, −85 ◦C, −27 ◦C, −26 ◦C, 0 ◦C, 85 ◦C, 210 ◦C, 1750 ◦C.
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Question 2.3 (a)

(−3) × 4 = −12
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Question 2.3 (b)

(−10) − (−5) = −5
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Question 2.3 (c)

6 ÷ (−2) = −3
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Question 2.3 (d)

(−12) ÷ (−6) = 2
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Question 2.4 (a)

117 − (−38) + (−286) = −131
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Question 2.4 (b)

(−1624) ÷ (−29) = 56
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Question 2.4 (c)

(−123) × (−24) = 2952
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Question 3.1
3
4

,
60
80

,
75

100
, and

300
400

are all equivalent fractions; they can all be reduced to
3
4

.

6
4

and
3
8

are not equivalent to the other fractions or to each other; they have
different values.
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Question 3.2 (a)

The ratio of women to men in the group is 8 : 15.
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Question 3.2 (b)

The total number of students is 15 + 8 = 23, so
8

23
of the group are women.
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Question 3.3 (a)

70%

{Remember, to convert a fraction to a percentage you multiply it by 100%; so
7

10
is equivalent to

7
10
× 100% = 70%. }
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Question 3.3 (b)

45%
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Question 3.3 (c)

52%
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Question 3.3 (d)

63%
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Question 3.3 (e)

70%
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Question 3.3 (f)

150%

{Note that this last answer is greater than 100%, because the fraction
30
20

(or
3
2

)
is greater than 1.}

193



Question 3.4 (a)

60% =
60

100
=

6
10

=
3
5

{Here, we have first divided the top and bottom of the sixty-hundredths by 10,
and then by 2. Remember that dividing (or multiplying) both the top and bottom
of a fraction by any number will produce an equivalent fraction. It is
conventional to express fractions with the smallest possible numbers on the top
and bottom.}

194



Question 3.4 (b)

64% =
64

100
=

32
50

=
16
25

{Here we have divided the top and the bottom of
64

100
by 2 and then 2 again,

which is the same as dividing by 4.}
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Question 3.4 (c)

65% =
65

100
=

13
20
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Question 3.4 (d)

67% =
67

100

{This time, there are no whole numbers by which we can divide both 67 and 100
to produce smaller whole numbers on the top and bottom.}
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Question 3.5 (a)
2
5
× 20 = 8
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Question 3.5 (b)
7
8
× 24 = 21
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Question 3.5 (c)

15% of 60 is
15

100
× 60 = 9
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Question 3.5 (d)

60% of 5 is
60
100
× 5 = 3
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Question 3.6 (a)

2
3

+
1
6

=
2 × 6
3 × 6

+
1 × 3
6 × 3

=
12
18

+
3
18

=
��15 5

��18 6
=

5
6
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Question 3.6 (b)

3
4
−

1
6

=
3 × 6
4 × 6

−
1 × 4
6 × 4

=
18
24
−

4
24

=
��14 7

��24 12
=

7
12
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Question 3.7 (a)
2
7
÷

1
4

=
2
7
×

4
1

=
2 × 4
7 × 1

=
8
7
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Question 3.7 (b)
2
3
÷

3
4

=
2
3
×

4
3

=
2 × 4
3 × 3

=
8
9
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Question 3.7 (c)
3
4
÷ 5 =

3
4
÷

5
1

=
3
4
×

1
5

=
3 × 1
4 × 5

=
3

20
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Question 4.1 (a)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

1
8

= 0.125
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Question 4.1 (b)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

1
4

= 0.25
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Question 4.1 (c)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

3
4

= 0.75
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Question 4.1 (d)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

1
10

= 0.1

This highlights the fact that the first number after the decimal point tells us the
‘number of tenths’.
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Question 4.1 (e)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

2
10

= 0.2

This highlights the fact that the first number after the decimal point tells us the
‘number of tenths’.

211



Question 4.1 (f)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

3
10

= 0.3

This highlights the fact that the first number after the decimal point tells us the
‘number of tenths’.
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Question 4.1 (g)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

1
100

= 0.01

This highlights the fact that the second number after the decimal point tells us
the ‘number of hundredths’.
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Question 4.1 (h)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

3
100

= 0.03

This highlights the fact that the second number after the decimal point tells us
the ‘number of hundredths’.
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Question 4.1 (i)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

5
100

= 0.05

This highlights the fact that the second number after the decimal point tells us
the ‘number of hundredths’.
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Question 4.1 (j)

You can convert the fraction to the equivalent decimal number by dividing the
number on the top of the fraction by the number on the bottom.

3
1000

= 0.003
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Question 4.2 (a)

To convert a decimal number between 0 and 1 to a fraction, you write the digits
that follow the decimal point on the top of the fraction, and on the bottom of the
fraction you write a 1 followed by the same number of zeros as there are digits
following the decimal point. So for 0.7, you write 7 on the top of the fraction,
and 10 on the bottom – one zero on the bottom because there is one digit on the
top of the fraction.

0.7 =
7
10
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Question 4.2 (b)

To convert a decimal number between 0 and 1 to a fraction, you write the digits
that follow the decimal point on the top of the fraction, and on the bottom of the
fraction you write a 1 followed by the same number of zeros as there are digits
following the decimal point. So for 0.8, you write 8 on the top of the fraction,
and 10 on the bottom – one zero on the bottom because there is one digit on the
top of the fraction. Both these numbers are divisible by two, so the fraction can
be simplified.

0.8 =
8
10

=
4
5
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Question 4.2 (c)

To convert a decimal number between 0 and 1 to a fraction, you write the digits
that follow the decimal point on the top of the fraction, and on the bottom of the
fraction you write a 1 followed by the same number of zeros as there are digits
following the decimal point. So for 0.2, you write 2 on the top of the fraction,
and 10 on the bottom – one zero on the bottom because there is one digit on the
top of the fraction. Both these numbers are divisible by two, so the fraction can
be simplified.

0.2 =
2
10

=
1
5
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Question 4.2 (d)

To convert a decimal number between 0 and 1 to a fraction, you write the digits
that follow the decimal point on the top of the fraction, and on the bottom of the
fraction you write a 1 followed by the same number of zeros as there are digits
following the decimal point. So for 0.22, you write 22 on the top of the fraction,
and 100 on the bottom – two zeros on the bottom because there are two digits on
the top of the fraction. Both these numbers are divisible by two, so the fraction
can be simplified.

0.22 =
22

100
=

11
50
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Question 4.2 (e)

To convert a decimal number between 0 and 1 to a fraction, you write the digits
that follow the decimal point on the top of the fraction, and on the bottom of the
fraction you write a 1 followed by the same number of zeros as there are digits
following the decimal point. So for 0.222, you write 222 on the top of the
fraction, and 1000 on the bottom – three zeros on the bottom because there are
three digits on the top of the fraction. Both these numbers are divisible by two,
so the fraction can be simplified.

0.222 =
222

1000
=

111
500
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Question 4.3 (a)

79% =
79

100
= 0.79
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Question 4.3 (b)

35% =
35

100
= 0.35
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Question 4.3 (c)

3% =
3

100
= 0.03
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Question 4.4 (a)

1.35 + 12.76 = 14.11
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Question 4.4 (b)

24.31 − 13.94 = 10.37
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Question 4.4 (c)

3.05 × 2.2 = 6.71
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Question 4.4 (d)

499.56 ÷ 27.6 = 18.1
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Question 4.5 (a)

0.3 to one decimal place; 0.26 to two decimal places; 0.265 to three decimal
places.
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Question 4.5 (b)

0.8 to one decimal place; 0.83 to two decimal places; 0.826 to three decimal
places.
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Question 4.5 (c)

21.1 to one decimal place; 21.12 to two decimal places; 21.118 to three decimal
places.
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Question 5.1 (a)

5 km = 5 000 m = 500 000 cm = 5 000 000 mm.
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Question 5.1 (b)

3 kg = 3 000 g = 3 000 000 mg.
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Question 5.1 (c)

25 s = 25 000 ms.
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Question 5.2 (a)

4 000 g = 4 kg, since 1 000 g = 1 kg. So the calculation becomes
7 kg + 4 kg = 11 kg.

Alternatively, we could calculate the answer in grams. In this case,
7 kg = 7 000 g, and 7 000 g + 4 000 g = 11 000 g.

{The two answers are clearly equivalent: 11 kg = 11 000 g. Either one is
correct.}
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Question 5.2 (b)

55 cm − 40 mm = 55 cm − 4 cm = 51 cm.

Alternatively, 550 mm − 40 mm = 510 mm.
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Question 5.2 (c)

20 s − 1 000 ms = 20 s − 1 s = 19 s.

Alternatively, 20 000 ms − 1 000 ms = 19 000 ms.
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Question 5.3 (a)

3 mm × 2 mm = 6 mm2
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Question 5.3 (b)

45 km ÷ 3 hour = 15 km/hour
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Question 5.3 (c)

12 000 kg ÷ 2 m3 = 6 000 kg/m3
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Question 5.3 (d)

10 km ÷ 2 km =
10 ��km
2 ��km

=
10
2

= 5
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Question 6.1

Area of the bottom of the pool is 6 m × 7 m = 42 m2.

Volume of the swimming pool is 6 m × 7 m × 2 m = 84 m3.
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Question 6.2

Since 1 000 litres = 1 m3, then 2.5 million litres is

2 500 000 litres = 2 500 × 1 000 litres

= 2 500 × 1 m3

= 2 500 m3
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Question 7.1 (a)

100 000 000 = 1.0 × 108 when expressed in scientific notation
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Question 7.1 (b)

400 000 000 000 = 4.0 × 1011 when expressed in scientific notation
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Question 7.1 (c)

35 000 = 3.5 × 104 when expressed in scientific notation
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Question 7.1 (d)

95 × 105 = 9.5 × 106 when expressed in scientific notation
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Question 7.1 (e)

0.51 × 103 = 5.1 × 102 when expressed in scientific notation
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Question 7.2 (a)

7.3 × 104 = 73 000 when written out in full
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Question 7.2 (b)

3.6 × 106 = 3 600 000 when written out in full
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Question 7.2 (c)

4.44 × 105 = 444 000 when written out in full
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Question 7.2 (d)

6.05 × 103 = 6 050 when written out in full
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Question 7.3

150 000 000 000 = 1.5 × 1011.

There are two ways of doing this. Starting with 1.5, the decimal point has to be
moved 11 places to the right to produce 150 000 000 000. Therefore the power
must be 11.

An alternative approach is to recognise that 1.5 has to be multiplied by 10 eleven
times to obtain 150 000 000 000. Again, this tells us that the power term must be
1011.
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Question 7.4 (a)

The starting point for quoting 0.000 000 000 25 in scientific notation is 2.5 (the
number that lies between 1.0 and 9.9). The decimal point has to be moved ten
places to the left to reach 0.000 000 000 25, so the power of ten must be −10 and
the answer 2.5 × 10−10 m.
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Question 7.4 (b)

2.5 × 10−4 m
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Question 7.4 (c)

First of all convert the fraction
1

1 000 000
into a decimal. This is 0.000 001. In

scientific notation this is 1 × 10−6 m. Alternatively,

1
1 000 000

m =
1

106 m = 1 × 10−6 m
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Question 7.4 (d)

3.5 × 10−3 m
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Question 7.5 (a)

To find the decimal number corresponding to 7.3 × 10−4, the decimal point in 7.3
has to be moved four places to the left to give 0.000 73. The alternative approach
is to think of, and work out, 7.3 ÷ 10 ÷ 10 ÷ 10 ÷ 10.
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Question 7.5 (b)

0.000 000 29.
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Question 7.6 (a)

From the definition of the prefixes, 1 km = 1 000 m and 1 m = 1 000 mm. So

1 km = 1, 000 × 1 m
= 1 000 × (1 000 mm)
= 1 000 000 mm

= 106 mm
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Question 7.6 (b)

Since 106 mm = 1 km, from the answer to Question 7.6(a), then

1 mm =
1 km
106 =

1
106 km = 10−6 km
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Question 7.7 (a)

(4.5 × 104) × (4.0 × 1011) = 1.8 × 1016

262



Question 7.7 (b)

(6.5 × 10−27) × (2.0 × 10−14) = 1.3 × 10−40
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Question 7.7 (c)

108 ÷ (2 × 10−17) = 5 × 1024

If you obtained the incorrect answer 5 × 1025, it is likely that you entered
10 × 108 instead of 108 into your calculator. Remember that 108 can be written
as 1 × 108.
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Question 8.1 (a)
1

2 × 2 × 2 × 2
=

1
24 = 2−4
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Question 8.1 (b)
1

m ×m
=

1
m2 = m−2
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Question 8.2 (a)

kilometres per hour = km/hour = km hour−1

Note that hour could be abbreviated to either h or hr, and that there is a space
between the units.
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Question 8.2 (b)

milligrams per litre = mg/l = mg l−1

Note that there is a space between the units.
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Question 8.2 (c)

kilograms per cubic metre = kg/m3 = kg m−3

Note that there is a space between the units.
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Question 8.3 (a)

6.1 Tm = 6.1 × 1012 m
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Question 8.3 (b)

3.5 nm = 3.5 × 10−9 m
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Question 8.3 (c)

1.7 µm = 1.7 × 10−6 m
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Question 9.1 (a)

5.63 m is given to three significant figures.
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Question 9.1 (b)

3 567.1 kg is given to five significant figures.
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Question 9.1 (c)

17 µs is given to two significant figures.
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Question 9.2 (a)

5.683
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Question 9.2 (b)

5.7

Note that the digits following the ‘6’ round up, so the answer is 5.7 not 5.6.
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Question 9.3 (a)

1.240 mm is given to four significant figures.
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Question 9.3 (b)

0.019 mm is given to two significant figures. Initial zeros don’t count.
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Question 9.3 (c)

10.009 5 mm is given to six significant figures.
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Question 9.3 (d)

8.90 × 104 mm is given to three significant figures.
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Question 9.4 (a)

0.43 m ÷ 1.2 s = 0.36 m s−1 (two significant figures)
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Question 9.4 (b)

2.373 m × 3.6 m = 8.5 m2 (two significant figures)
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Question 9.4 (c)

6 342 kg ÷ 2.42 m3 = 2.62 × 103 kg m−3 (three significant figures)
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Question 10.1 (a)

The number given in the second column of Table 10.1 on the same line as
‘flushing lavatory’ is 44, and we attach the units ‘litres’ to this. So the average
person uses 44 litres of water per day for this purpose.
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Question 10.1 (b)

The entry in the third row from the bottom of the first column of the table is
‘agriculture’, so the number 7, together with the table title and the column
heading, tells us that the use of water for agriculture in the UK is equivalent to 7
litres per day for each person in the country.
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Question 10.2

Remembering to incorporate the ‘1020 kg’ from the column heading, the mass of
Uranus is 866 200 × 1020 kg. In scientific notation, this is 8.662 × 1025 kg to
four significant figures (since the decimal point needs to be moved an additional
five places).
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Question 11.1

10%
(

1
10

)
of 360◦ is 36◦ so the required angle is 36◦.
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Question 11.2

We need to combine data from two of the height intervals
to obtain the answer. Reading from the vertical scale (note
that there are divisions marked for every 5 plants) there are
about 2 irises between 75 cm and 80 cm in height, and
there are about 7 irises between 80 cm and 85 cm in
height, so altogether there are approximately 9 irises of
less than 85 cm.
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Question 12.1

Following a vertical line upwards
from 11 years on the horizontal
axis to the curve and then
following a horizontal line left
from this point on the curve to the
vertical axis gives a value of
approximately 122 cm.
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Question 12.2 (a)

The subject of this graph is the volume of water flowing each second past a point
in a stream after heavy rain. {The title or caption is usually the best place to find
out what a graph is showing.}
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Question 12.2 (b)

Water flow, measured in litres per second, is plotted on the vertical axis.
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Question 12.2 (c)

Time is plotted on the horizontal axis, and this is measured in hours. {The
24-hour clock has been used, so the period covered is 1 day.}
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Question 12.2 (d)

At 12.00 hours, the water flow was about 95 litres per second. {Found by
following a line vertically upwards from 12.00 hours to the curve, then following
a horizontal line left from this point on the curve to the vertical axis and reading
from the scale. In this case, the line intersects the scale one division below 100.
Since 10 divisions correspond to 50 litres per second, 1 division corresponds to 5
litres per second, and so the flow is (100 − 5) litres per second, or 95 litres per
second.}
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Question 12.2 (e)

The maximum flow was about 155 litres per second, and this occurred at
approximately 08.00 hours. {The maximum flow corresponds to the peak of the
curve; by drawing horizontal and vertical lines from the peak to the axes you can
read off the flow and the time respectively.}
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Question 12.2 (f)

The flow was steady until 04.00 hours, and then it increased very rapidly for
about two hours. After this it increased more slowly until it reached a maximum
flow at 08.00 hours. It then started to decrease; there was a small peak at about
11.00 hours, and the flow gradually decreased until it became fairly steady after
20.00 hours, at a greater flow than at the start of the day.
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Question 12.3

You may use any reasonably well separated pair of points
on the graph to calculate the gradient, and should obtain ap-
proximately the same answer whichever points you choose.
Taking the points corresponding to a volume of 0 m3 and a
volume of 500 m3 gives:

gradient =
rise
run

=
(1.0 − 0.0) m
(500 − 0) m3

=
1.0 m

500 m3

= 2.0 × 10−3 m−2 to two significant figures. 0 100 200 300 400 500
0.0
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Question 13.1 (a)

V = lwh

where V is volume, l is length, w is width and h is height. In this case:

l = 3 cm
w = 2 cm
h = 15 mm = 1.5 cm

Substituting these values into the equation gives:

V = lwh
= 3 cm × 2 cm × 1.5 cm

= 9 cm3

So, the volume of the ice cube is 9 cm3.

Alternatively, you could start by converting the length, width and height to
metres:

l = 3 cm = 3 × 10−2 m

w = 2 cm = 2 × 10−2 m

h = 15 mm = 15 × 10−3 m = 1.5 × 10−2 m
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Substituting these values into the equation gives:

V = lwh

= (3 × 10−2 m) × (2 × 10−2 m) × (1.5 × 10−2 m)

= (3 × 10−2) × (2 × 10−2) × (1.5 × 10−2) m3

= 9 × 10−6 m3

So, the volume of the ice cube is 9 × 10−6 m3.

Since 1 cm = 1 × 10−2 m, 1 cm3 = (1 × 10−2 m)3 = 1 × 10−6 m3 so the answers
obtained by the two methods are equivalent. An answer of 9000 mm3 is also
acceptable.
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Question 13.1 (b)

V = lwh

where V is volume, l is length, w is width and h is height. In this case:

l = 13 km
w = 6 km
h = 125 m = 0.125 km

Substituting these values into the equation gives:

V = lwh
= 13 km × 6 km × 0.125 km

= 9.75 km3

So, the volume of the iceberg is 9.75 km3.

Alternatively, you could start by converting the length, width and height to
metres:

l = 13 km = 13 × 103 m = 1.3 × 104 m

w = 6 km = 6 × 103 m
h = 125 m

Substituting these values into the equation gives:

V = lwh

= (1.3 × 104 m) × (6 × 103 m) × (125 m)

= 9.75 × 109 m3
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So, the volume of the iceberg is 9.75 × 109 m3.

Since 1 km = 1 × 103 m, 1 km3 = (1 × 103 m)3 = 1 × 109 m3 so the answers
obtained by the two methods are equivalent.
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Question 13.2

The diameter of the hailstone is 1 cm, so its radius is 0.5 cm.

V =
4
3
πr3

=
4
3
× π × (0.5 cm)3

= 0.523 598 775 cm3

So, the volume of the hailstone is 0.5 cm3 to one significant figure.

Alternatively, you might have started by converting the radius to a value in
metres:

r = 0.5 cm = 0.5 × 10−2 m = 5 × 10−3 m

Substituting this value into Equation 13.4 gives:

V =
4
3
πr3

=
4
3
× π × (5 × 10−3 m)3

= 5 × 10−7 m3 to one significant figure

The answers obtained by the two methods are equivalent. It is also reasonable to
give a value for the volume of the hailstone in mm3 (500 mm3 to one significant
figure).
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bar charts, 97
base number, 10
BEDMAS, 14
brackets, 12

calculator use, 3, 7, 24, 80
cancelling fractions, 28
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checking answers, 18
commutative, 148

decimal numbers, 42
decimal places, 49
degree, 96

equivalent fractions, 25
exponent, 11

fractions, 16, 25, 35

gradient of graph, 107
graphs, 99

histograms, 98

improper fractions, 29
index (indices), 11
interpolation, 105

kilo (prefix), 85

litre, 68

mass, 52, 55
milli (prefix), 85

negative numbers, 19

order of arithmetic operations, 9

percentages, 32
pie charts, 93
powers, 10, 82
powers of ten, 70
proportion, 25

ratio, 30
rounding, 49
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scientific notation, 70, 80
SI units, 51, 85
significant figures, 86
square root, 16
straight line graph, 107

tables, 90

units, 51, 82

volume, 65

weight, 55
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End of Maths Skills ebook.
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